Regression methods on the cone of positive-definite matrices Nicolas Boumal and Pierre-Antoine Absil, UCLouvain (Belgium)

We filter sampled signals whose values are positive-definite matrices.

Example: the signal could be the correlation matrix of a dynamic stochastic process.

In a vector space, filtering (or regression) is often cast as an optimization problem for either continuous or discrete curves.

The cost function is a penalty on misfit, speed and acceleration.

This is simply a linear least squares objective.

But the cone of positive-definite matrices is not a vector space, hence there is a need for a broader framework.

$$\int_{t_1}^{t_N} \|\ddot{\gamma}(t)\|^2 \mathrm{d}t$$

We investigate two methods based on two different Riemannian geometries.

Method 1: Use the matrix logarithm to map the problem back to the set of symmetric matrices, which is a vector space.

Method 2: Explicitly fit the curve on a manifold by generalizing the objective function *E* and minimizing it.

0. Define a Riemannian metric on the cone:

$$\langle H_1, H_2 \rangle_A = \langle A^{-1/2} H_1 A^{-1/2}, A^{-1} \rangle_A$$

1. Replace Euclidean distances with geodesic distances.

2. Generalize finite differences with the logarithmic mapping (Log).

$$\log_x(y) \approx y - x$$

$$E(\gamma) = \sum_{i=1}^{N} \operatorname{dist}^{2}(p_{i}, \gamma_{s_{i}}) + \lambda \sum_{i=1}^{N_{d}-1} + \mu \sum_{i=2}^{N_{d}-1} \beta_{i} \left\| \frac{\operatorname{Log}_{\gamma_{i}}(\gamma_{i}+1)}{\sum_{i=2}^{N_{d}-1} \beta_{i}} \right\| \frac{\operatorname{Log}_{\gamma_{i}}(\gamma_{i}+1)}{\sum_{i=2}^{N_{d}-1} \beta_{i}} \left\| \frac{\operatorname{Log}_{\gamma_{i}}(\gamma_{i}+1)}{\sum_{i=2}^{N_{d}-1} \beta_{i}} \right\|$$

We need to minimize this objective under the constraints that the points γ_i belong to the manifold of positive-definite matrices. To this end, we use feasible optimization methods.

 $^{1/2}H_2A^{-1/2}$

We show regression curves across three data points for various parameter values and with method 1 (first line) and method 2 (second line)

First order	irst order regression: $\lambda = 10^{-1}, \mu = 0$														
	Ø	8	Ø	0	Ø	Ø	Ø	Ø	Ø	Ø	Ø	θ	θ	Ø	
$\oplus \oplus \oplus$	Ð	Ø	0	0	Ø	Ø	0	Ø	Ø	Ø	$ \theta $	θ	θ	θ	
Second or	Second order regression: $\lambda=0, \mu=10^{-3}$														
			1				1	Λ	Л	Λ	Л	M	Λ	H	
										H A	H M	f N	Ű	Ŭ	
	Ø	Ø	Ø	Ø	Ø	Ø		Ø	Ø	Ø	Ø	Ø	Ũ	U	
Geodesic regression: $\lambda=0, \mu=10^3$														٨	
														ŧ	
A AA	ð	Ð	Ð	0	0	\oslash	Ø	Ø	Ø	Ø	θ	Ø	Ø	ł	
A AA	Ð	Ð	Ð	Θ	\oslash	\oslash	\oslash	\mathcal{O}	Ø	Ø	θ	Ø	Ð		

Both methods are efficient for first order regression, but the second method may need many iterations to reach convergence for second order regression.

[1] N. Boumal, P.-A. Absil, *Regression methods on the cone of positive*definite matrices, In Proceedings of ICASSP 2011, Prague.

[2] N. Boumal, P.-A. Absil, A discrete regression method on manifolds and its application to data on SO(n), In Proceedings of IFAC 2011, Milan.

Results are very similar but computation times and complexity differ greatly.

