
Lift me up but not too high
Fast algorithms to solve SDP’s with block-diagonal constraints

Nicolas Boumal
Université catholique de Louvain (Belgium)
IDeAS seminar, May 13th, 2014, Princeton

The Riemannian staircase
Because sometimes

you’re just going to the second floor

This talk is about solving this, fast:

Let’s see how it comes up in applications.

min
𝑋

 𝑓(𝑋)

 𝑋 = 𝑋𝑇 ≽ 0,

 𝑋𝑖𝑖= 𝐼𝑑 for 𝑖 = 1…𝑚.

Orthogonal matrices to estimate:

 𝑄1, 𝑄2, … , 𝑄𝑚 ∈ 𝑂(𝑑).

Measurements:

 𝐶𝑖𝑗 = 𝑄𝑖𝑄𝑗
𝑇 + 𝜖𝑖𝑗

Synchronization of rotations

8

𝑄𝑖

𝑄𝑗
𝐶𝑖𝑗

Measurements (white noise):

𝐶𝑖𝑗 = 𝑄𝑖𝑄𝑗
𝑇 + 𝜖𝑖𝑗

Maximum likelihood:

min
𝑄 𝑖∈𝑂(𝑑)

 𝐶𝑖𝑗 − 𝑄 𝑖𝑄 𝑗
𝑇 2

𝑖,𝑗

Synchronization of rotations

9

𝑄𝑖

𝑄𝑗
𝐶𝑖𝑗

Measurements (white noise):

𝐶𝑖𝑗 = 𝑄𝑖𝑄𝑗
𝑇 + 𝜖𝑖𝑗

Maximum likelihood:

max
𝑄 𝑖∈𝑂(𝑑)

 Trace(𝐶𝑖𝑗
𝑇𝑄 𝑖𝑄 𝑗

𝑇)

𝑖,𝑗

Synchronization of rotations

10

𝑄𝑖

𝑄𝑗
𝐶𝑖𝑗

max Trace(𝐶𝑖𝑗
𝑇𝑄 𝑖𝑄 𝑗

𝑇)

𝑖,𝑗

Such that 𝑄 𝑖𝑄 𝑖
𝑇 = 𝐼𝑑 for 𝑖 = 1…𝑚

Maximizing the likelihood is NP-hard
Indeed: if d = 1, this includes Max-Cut

max Trace(𝐶𝑖𝑗
𝑇𝑄 𝑖𝑄 𝑗

𝑇)

𝑖,𝑗

Such that 𝑄 𝑖𝑄 𝑖
𝑇 = 𝐼𝑑 for 𝑖 = 1…𝑚

Introduce 𝑋𝑖𝑗 = 𝑄 𝑖𝑄 𝑗
𝑇

The classic trick is to lift:
replace quadratic terms by linear ones.

max Trace(𝐶𝑖𝑗
𝑇𝑋𝑖𝑗)

𝑖,𝑗

Such that 𝑋𝑖𝑖 = 𝐼𝑑 for 𝑖 = 1…𝑚

Introduce 𝑋𝑖𝑗 = 𝑄 𝑖𝑄 𝑗
𝑇

The classic trick is to lift:
replace quadratic terms by linear ones.

𝑋𝑖𝑗 = 𝑄 𝑖𝑄 𝑗
𝑇, thus:

𝑋 =
𝑄 1
⋮

𝑄 𝑚

𝑄 1
𝑇 … 𝑄 𝑚

𝑇 ∈ ℝ𝑚𝑑×𝑚𝑑

From 𝑄 to 𝑋, a block matrix such that:

𝑋 =
𝑄 1
⋮

𝑄 𝑚

𝑄 1
𝑇 … 𝑄 𝑚

𝑇 ∈ ℝ𝑚𝑑×𝑚𝑑

In other words:
𝑋 = 𝑋𝑇 ≽ 0,
𝑋𝑖𝑖 = 𝐼𝑑 for 𝑖 = 1…𝑚,
rank 𝑋 = 𝑑.

From 𝑄 to 𝑋, a block matrix such that:

max
𝑋

 Trace(𝐶𝑋)

 𝑋 = 𝑋𝑇 ≽ 0,

 𝑋𝑖𝑖 = 𝐼𝑑 for 𝑖 = 1…𝑚,

 rank 𝑋 = 𝑑

This new problem formulation is
equivalent to the original one.

max
𝑋

 Trace(𝐶𝑋)

 𝑋 = 𝑋𝑇 ≽ 0,

 𝑋𝑖𝑖 = 𝐼𝑑 for 𝑖 = 1…𝑚.

Dropping the rank constraint
altogether yields an SDP relaxation.

If 𝐶≽0, the value of this SDP
approximates the value of the
rank-constrained (hard) problem.

This is sometimes called the
Orthogonal-Cut SDP.

min
𝑋

 𝑓(𝑋)

 𝑋 = 𝑋𝑇 ≽ 0,

 𝑋𝑖𝑖= 𝐼𝑑 for 𝑖 = 1…𝑚.

More generally, we address this
problem (with 𝑓 convex, smooth):

Control over the cost means
we can aim for robustness.

• The generalized Procrustes problem

• Global registration (Chaudhury et al. ‘12)

• Synchronization of rotations (Singer ‘11)

• Common lines registration (LUD) (Wang et al. ‘13)

• Orthogonal-Cut (Bandeira et al. ‘13),
Phase-Cut (Waldspurger et al. ‘12), Max-Cut (Goemans et al. ‘95)

A few different applications involve
the same formulation

Computation time in minutes

Number 𝑚 of rotations to synchronize

SeDuMi

The computation time grows quickly,
but the final answer is always of rank 𝑑.

We should expect low-rank solutions

There exists a solution of rank ≤ 𝑛(𝑑 + 1)
(Pataki ’98, for the linear cost case)

Wishful thinking: the underlying problem “calls”
for a low-rank solution… (?)

Lifting is like playing hide and seek in
a reverse pyramid shaped building,

but you take the elevator to the last floor
and start searching down from there.

and you know the guy you’re
looking for went by the stairs,

The SDPLR idea (Burer et al. ’03, ’04):
Factorize with tall and skinny 𝑌.

min
𝑌

 Trace(𝐶𝑌𝑌𝑇)

 such that 𝑋 = 𝑌𝑌𝑇 is feasible,

 𝑌 ∈ ℝ𝑛×𝑝.

They handle constraints via an augmented Lagrangian.
If 𝑌 is rank deficient, 𝑋 is optimal.

rank 𝑋 ≤ 𝑝

What if most local optimizers are full-rank?

In practice, we don’t see that. Burer and Monteiro (’04)
explain why for linear cost functions (Theorem 3.4):

Suppose 𝑌 is a local optimizer for 𝑝 such that
𝑝 ≥ 𝑑 + 1 𝑚. Then, 𝑋 = 𝑌𝑌𝑇 is contained in the
relative interior of a face 𝐹 of the SDP over which the
objective function is constant. Moreover, if 𝐹 is just an
extreme point, then 𝑋 is a global optimizer of the SDP.

Computation time in minutes

Number 𝑚 of rotations to synchronize

SeDuMi

SDPLR

Much better. But SDPLR is generic software.
Our constraints have structure…

Acceptable 𝑌’s live on a manifold

𝑋 = 𝑋𝑇 ≽ 0,
rank 𝑋 ≤ 𝑝,

𝑋𝑖𝑖 = 𝐼𝑑 ∀𝑖

∃ 𝑌 ∈ ℝ𝑛×𝑝 such that
𝑋 = 𝑌𝑌𝑇,

𝑌 =
 𝑌1

⋮
𝑌𝑚

, 𝑌𝑖 ∈ ℝ𝑑×𝑝

𝑌𝑖𝑌𝑖
𝑇 = 𝐼𝑑 ∀ 𝑖

min
𝑌

 𝑓(𝑌𝑌𝑇)

 𝑌𝑖 is 𝑑 × 𝑝 orthonormal for 𝑖 = 1…𝑚.

We use Riemannian Trust-Regions to solve this.
See Absil, Baker, Gallivan: Trust-Region Methods on Riemannian Manifolds (2007).
Matlab toolbox: manopt.org

Thus, the nonlinear program is a
Riemannian optimization problem

min
𝑌

 𝑓(𝑌𝑌𝑇)

 𝑌 ∈ Stiefel 𝑑, 𝑝 𝑚.

We use Riemannian Trust-Regions to solve this.
See Absil, Baker, Gallivan: Trust-Region Methods on Riemannian Manifolds (2007).
Matlab toolbox: manopt.org

Thus, the nonlinear program is a
Riemannian optimization problem

Computation time in minutes

Number 𝑚 of rotations to synchronize

SeDuMi

SDPLR

Staircase

All solvers return solutions of rank 𝑑.
The staircase method optimizes just
once, with rank ≤ 𝑑+1.

Computation time in seconds

Number 𝑚 of rotations to synchronize

SeDuMi SDPLR

Staircase

3[s]

68[s]

Pros and cons
SDPLR Our method

Deals with any SDP Is restricted to diagonal block constraints

Handles only linear costs Handles any smooth cost
(guarantees if convex)

Penalizes constraints in the cost Satisfies the constraints at all iterates

Is mature C code Is experimental Matlab code

That’s all very well in practice,
but does it work in theory?

min
𝑋

 𝑓(𝑋)

 𝑋 ≽ 0, 𝑋𝑖𝑖= 𝐼𝑑 .

min
𝑌

 𝑔 𝑌 = 𝑓(𝑌𝑌𝑇)

 𝑌 ∈ Stiefel 𝑑, 𝑝 𝑚
.

Theorem:
Let 𝑌 be a local minimizer of the nonlinear program.
If 𝑌 is rank deficient and/or if 𝑝 = 𝑛 (𝑌 is square),
then 𝑋 = 𝑌𝑌𝑇 is a global minimizer of the convex program.

This suggests an algorithm
1. Set 𝑝 = 𝑑 + 1.

2. Compute 𝑌𝑝, a Riemannian local optimizer.

3. If 𝑌𝑝 is rank deficient, stop.
4. Otherwise, increase 𝑝 and go to 2.

This is guaranteed to return a globally optimal 𝑋.
(Worst case scenario: 𝑝 increases all the way to 𝑛.)

From local opt 𝑌 to global opt 𝑋.

min
𝑋

 𝑓(𝑋)

 𝑋 ≽ 0, 𝑋𝑖𝑖= 𝐼𝑑 .

𝑋 is globally optimal iff there
exists 𝑆 such that: (KKT)
𝑋 ≽ 0, 𝑋𝑖𝑖 = 𝐼𝑑
𝑆 ≽ 0, 𝑆𝑋 = 0
𝛻𝑓 𝑋 − 𝑆 is block diagonal

If 𝑌 is locally optimal, then
grad 𝑔 𝑌 = 0
Hess 𝑔 𝑌 ≽ 0

These are the Riemannian
(projected) gradient and Hessian.

min
𝑌

 𝑔 𝑌 = 𝑓(𝑌𝑌𝑇)

 𝑌 ∈ Stiefel 𝑑, 𝑝 𝑚
.

(𝑑 + 1)st singular value of 𝑌

Noise level on the measurements

Synchronization
of 100 orthogonal
matrices in
𝑂(𝑑 = 3),
optimizing with
𝑝 = 𝑑 + 1.

Phase transition for rank recovery?

• It appears that even at high levels of noise,

the SDP admits a rank 𝑑 solution.

• This solves the hard problem…

• How can we understand this?

µ-Partial answer: single cycle synch

For synchronization on a cycle, with measurements

𝐶12, 𝐶23, 𝐶34, … , 𝐶𝑚1 ∈ 𝑂 𝑑 ,

if the product of the measurements

𝑃 = 𝐶12𝐶23 …𝐶𝑚1

has no eigenvalue -1, the SDP has a rank 𝑑 solution.

Proof: write explicit solution
and intuit a dual certificate.

Three further ideas to think about

• Robust works too: minimize sum of unsquared
errors with Huber regularization, fast.

• Fancy rounding technique: if rank(𝑋) > 𝑑,
project to rank 𝑑 and re-optimize.

• Additional constraints could be handled by
convex penalties (research in progress).

Will you take the stairs next time?

Code available on my webpage.
Or e-mail me: nicolasboumal@gmail.com

Robust synchronization: the least-
unsquared deviation approach (LUD)

min
𝑅1,…,𝑅𝑚

 𝐶𝑖𝑗 − 𝑅𝑖𝑅𝑗
𝑇

𝐹
𝑖∼𝑗

such that 𝑅𝑖𝑅𝑖
𝑇 = 𝐼𝑑 and det 𝑅𝑖 = 1.

Wang & Singer 2013:
Exact and stable recovery of rotations for robust synchronization.

Robust synchronization: the least-
unsquared deviation approach (LUD)

min
𝑋≽0

 𝐶𝑖𝑗 − 𝑋𝑖𝑗 𝐹
𝑖∼𝑗

such that 𝑋𝑖𝑖 = 𝐼𝑑 and det 𝑅𝑖 = 1.

Wang & Singer 2013:
Exact and stable recovery of rotations for robust synchronization.

Nonlinear cost: SDPLR does not apply.
The authors use an adapted ADMM.

Robust synchronization:
Smoothing the cost with a Huber loss.

min
𝑋≽0

 ℓ 𝐻𝑖𝑗 − 𝑋𝑖𝑗 𝐹
𝑖∼𝑗

such that 𝑋𝑖𝑖 = 𝐼𝑑 .
ℓ

Dealing with additional constraints?

For example, when searching for permutations,

enforcing 𝑋𝑖𝑖 = 𝐼𝑑 and 𝑋𝑖𝑗 doubly stochastic

is useful, since if rank(𝑋) = 𝑑, then the 𝑋𝑖𝑗’s
are doubly stochastic and orthogonal, hence
they are permutations.

There are ways to accommodate
more constraints in our algorithm…
For example, enforce 𝐴𝑖 , 𝑋 ≥ 𝑏𝑖 by penalizing

min
𝑖

 𝐴𝑖 , 𝑋 − 𝑏𝑖 ≈ −𝜖 log 𝑒−
𝐴𝑖, 𝑋 −𝑏𝑖

𝜖

𝑖

But it adds parameters and it reduces the
competitive edge of the Riemannian approach.
(research in progress)

