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The Riemannian staircase 
Because sometimes 

you’re just going to the second floor 



This talk is about solving this, fast: 

Let’s see how it comes up in applications. 

min
𝑋

  𝑓(𝑋) 

          𝑋 = 𝑋𝑇 ≽ 0, 

          𝑋𝑖𝑖= 𝐼𝑑 for 𝑖 = 1…𝑚. 

 



Orthogonal matrices to estimate: 

 𝑄1, 𝑄2, … , 𝑄𝑚 ∈ 𝑂(𝑑). 

 

Measurements: 

 𝐶𝑖𝑗 = 𝑄𝑖𝑄𝑗
𝑇 + 𝜖𝑖𝑗  
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𝑄𝑖 

𝑄𝑗 
𝐶𝑖𝑗  



Measurements (white noise): 

𝐶𝑖𝑗 = 𝑄𝑖𝑄𝑗
𝑇 + 𝜖𝑖𝑗  

Maximum likelihood: 

min
𝑄 𝑖∈𝑂(𝑑)

 𝐶𝑖𝑗  − 𝑄 𝑖𝑄 𝑗
𝑇 2

𝑖,𝑗
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𝑄𝑖 

𝑄𝑗 
𝐶𝑖𝑗  



Measurements (white noise): 

𝐶𝑖𝑗 = 𝑄𝑖𝑄𝑗
𝑇 + 𝜖𝑖𝑗  

Maximum likelihood: 

max
𝑄 𝑖∈𝑂(𝑑)

 Trace(𝐶𝑖𝑗
𝑇𝑄 𝑖𝑄 𝑗

𝑇)

𝑖,𝑗

 

Synchronization of rotations 
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𝑄𝑖 

𝑄𝑗 
𝐶𝑖𝑗  



max Trace(𝐶𝑖𝑗
𝑇𝑄 𝑖𝑄 𝑗

𝑇)

𝑖,𝑗

 

Such that 𝑄 𝑖𝑄 𝑖
𝑇 = 𝐼𝑑 for 𝑖 = 1…𝑚 

Maximizing the likelihood is NP-hard 
Indeed: if d = 1, this includes Max-Cut 



max Trace(𝐶𝑖𝑗
𝑇𝑄 𝑖𝑄 𝑗

𝑇)

𝑖,𝑗

 

Such that 𝑄 𝑖𝑄 𝑖
𝑇 = 𝐼𝑑 for 𝑖 = 1…𝑚 

Introduce 𝑋𝑖𝑗 = 𝑄 𝑖𝑄 𝑗
𝑇 

The classic trick is to lift: 
replace quadratic terms by linear ones. 



max Trace(𝐶𝑖𝑗
𝑇𝑋𝑖𝑗)

𝑖,𝑗

 

Such that 𝑋𝑖𝑖 = 𝐼𝑑 for 𝑖 = 1…𝑚 

Introduce 𝑋𝑖𝑗 = 𝑄 𝑖𝑄 𝑗
𝑇 

The classic trick is to lift: 
replace quadratic terms by linear ones. 



𝑋𝑖𝑗 = 𝑄 𝑖𝑄 𝑗
𝑇, thus: 

 

𝑋 = 
𝑄 1
⋮

𝑄 𝑚

𝑄 1
𝑇 … 𝑄 𝑚

𝑇 ∈ ℝ𝑚𝑑×𝑚𝑑 

From 𝑄 to 𝑋, a block matrix such that: 



𝑋 =  
𝑄 1
⋮

𝑄 𝑚

𝑄 1
𝑇 … 𝑄 𝑚

𝑇 ∈ ℝ𝑚𝑑×𝑚𝑑 

In other words: 
𝑋 = 𝑋𝑇 ≽ 0, 
𝑋𝑖𝑖 = 𝐼𝑑 for 𝑖 = 1…𝑚, 
rank 𝑋 = 𝑑. 

From 𝑄 to 𝑋, a block matrix such that: 



max
𝑋

 Trace(𝐶𝑋) 

          𝑋 = 𝑋𝑇 ≽ 0, 

          𝑋𝑖𝑖  = 𝐼𝑑 for 𝑖 = 1…𝑚, 

          rank 𝑋 = 𝑑 

This new problem formulation is 
equivalent to the original one. 



max
𝑋

 Trace(𝐶𝑋) 

          𝑋 = 𝑋𝑇 ≽ 0, 

          𝑋𝑖𝑖  = 𝐼𝑑 for 𝑖 = 1…𝑚. 

 

Dropping the rank constraint 
altogether yields an SDP relaxation. 

If 𝐶≽0, the value of this SDP 
approximates the value of the 
rank-constrained (hard) problem. 

This is sometimes called the 
Orthogonal-Cut SDP. 



min
𝑋

  𝑓(𝑋) 

          𝑋 = 𝑋𝑇 ≽ 0, 

          𝑋𝑖𝑖= 𝐼𝑑 for 𝑖 = 1…𝑚. 

 

More generally, we address this 
problem (with 𝑓 convex, smooth): 

Control over the cost means 
we can aim for robustness. 



• The generalized Procrustes problem 

• Global registration (Chaudhury et al. ‘12) 

• Synchronization of rotations (Singer ‘11) 

• Common lines registration (LUD) (Wang et al. ‘13) 

• Orthogonal-Cut (Bandeira et al. ‘13), 
Phase-Cut (Waldspurger et al. ‘12), Max-Cut (Goemans et al. ‘95) 

A few different applications involve 
the same formulation 



Computation time in minutes 

Number 𝑚 of rotations to synchronize 

SeDuMi 

The computation time grows quickly, 
but the final answer is always of rank 𝑑. 



We should expect low-rank solutions 

There exists a solution of rank ≤ 𝑛(𝑑 + 1) 
(Pataki ’98, for the linear cost case) 

 

Wishful thinking: the underlying problem “calls” 
for a low-rank solution… (?) 



Lifting is like playing hide and seek in 
a reverse pyramid shaped building, 

but you take the elevator to the last floor 
and start searching down from there. 

and you know the guy you’re 
looking for went by the stairs, 



The SDPLR idea (Burer et al. ’03, ’04): 
Factorize with tall and skinny 𝑌. 

min
𝑌

  Trace(𝐶𝑌𝑌𝑇) 

           such that 𝑋 = 𝑌𝑌𝑇 is feasible, 

       𝑌 ∈ ℝ𝑛×𝑝. 
  

They handle constraints via an augmented Lagrangian. 
If 𝑌 is rank deficient, 𝑋 is optimal. 

rank 𝑋 ≤  𝑝 



What if most local optimizers are full-rank? 

In practice, we don’t see that. Burer and Monteiro (’04) 
explain why for linear cost functions (Theorem 3.4): 

 

Suppose 𝑌 is a local optimizer for 𝑝 such that 
𝑝 ≥ 𝑑 + 1 𝑚. Then, 𝑋 =  𝑌𝑌𝑇 is contained in the 
relative interior of a face 𝐹 of the SDP over which the 
objective function is constant. Moreover, if 𝐹 is just an 
extreme point, then 𝑋 is a global optimizer of the SDP. 



Computation time in minutes 

Number 𝑚 of rotations to synchronize 

SeDuMi 

SDPLR 

Much better. But SDPLR is generic software. 
Our constraints have structure… 



Acceptable 𝑌’s live on a manifold 

𝑋 = 𝑋𝑇 ≽ 0, 
rank 𝑋 ≤ 𝑝, 
  
  
  

𝑋𝑖𝑖 = 𝐼𝑑 ∀𝑖 

 
  

∃ 𝑌 ∈ ℝ𝑛×𝑝 such that 
𝑋 = 𝑌𝑌𝑇, 

𝑌 =  
   𝑌1   

⋮
𝑌𝑚

, 𝑌𝑖 ∈ ℝ𝑑×𝑝 

𝑌𝑖𝑌𝑖
𝑇 = 𝐼𝑑 ∀ 𝑖 



min
𝑌

  𝑓(𝑌𝑌𝑇)  

            𝑌𝑖 is 𝑑 × 𝑝 orthonormal for 𝑖 = 1…𝑚. 
 

We use Riemannian Trust-Regions to solve this. 
See Absil, Baker, Gallivan: Trust-Region Methods on Riemannian Manifolds (2007). 
Matlab toolbox: manopt.org 

Thus, the nonlinear program is a 
Riemannian optimization problem 



min
𝑌

  𝑓(𝑌𝑌𝑇)  

            𝑌 ∈ Stiefel 𝑑, 𝑝 𝑚. 
 

We use Riemannian Trust-Regions to solve this. 
See Absil, Baker, Gallivan: Trust-Region Methods on Riemannian Manifolds (2007). 
Matlab toolbox: manopt.org 

Thus, the nonlinear program is a 
Riemannian optimization problem 



Computation time in minutes 

Number 𝑚 of rotations to synchronize 

SeDuMi 

SDPLR 

Staircase 

All solvers return solutions of rank 𝑑. 
The staircase method optimizes just 
once, with rank ≤ 𝑑+1. 



Computation time in seconds 

Number 𝑚 of rotations to synchronize 

SeDuMi SDPLR 

Staircase 

3[s] 

68[s] 



Pros and cons 
SDPLR Our method 

Deals with any SDP Is restricted to diagonal block constraints 

Handles only linear costs Handles any smooth cost 
(guarantees if convex) 

Penalizes constraints in the cost Satisfies the constraints at all iterates 

Is mature C code Is experimental Matlab code 



That’s all very well in practice, 
but does it work in theory? 

min
𝑋

  𝑓(𝑋) 

          𝑋 ≽ 0, 𝑋𝑖𝑖= 𝐼𝑑 . 

min
𝑌

  𝑔 𝑌 =  𝑓(𝑌𝑌𝑇) 

           𝑌 ∈ Stiefel 𝑑, 𝑝 𝑚
. 

Theorem: 
Let 𝑌 be a local minimizer of the nonlinear program. 
If 𝑌 is rank deficient and/or if 𝑝 = 𝑛 (𝑌 is square), 
then 𝑋 = 𝑌𝑌𝑇 is a global minimizer of the convex program. 



This suggests an algorithm 
1. Set 𝑝 = 𝑑 + 1. 

2. Compute 𝑌𝑝, a Riemannian local optimizer. 

3. If 𝑌𝑝 is rank deficient, stop. 
4. Otherwise, increase 𝑝 and go to 2. 

 
This is guaranteed to return a globally optimal 𝑋. 
(Worst case scenario: 𝑝 increases all the way to 𝑛.) 



From local opt 𝑌 to global opt 𝑋. 

min
𝑋

  𝑓(𝑋) 

          𝑋 ≽ 0, 𝑋𝑖𝑖= 𝐼𝑑 . 

𝑋 is globally optimal iff there 
exists 𝑆 such that: (KKT) 
𝑋 ≽ 0, 𝑋𝑖𝑖 = 𝐼𝑑  
𝑆 ≽ 0, 𝑆𝑋 = 0 
𝛻𝑓 𝑋 − 𝑆 is block diagonal 

If 𝑌 is locally optimal, then 
grad 𝑔 𝑌 = 0 
Hess 𝑔 𝑌 ≽ 0 

These are the Riemannian 
(projected) gradient and Hessian. 

min
𝑌

  𝑔 𝑌 =  𝑓(𝑌𝑌𝑇) 

           𝑌 ∈ Stiefel 𝑑, 𝑝 𝑚
. 



(𝑑 + 1)st singular value of 𝑌 

Noise level on the measurements 

Synchronization 
of 100 orthogonal 
matrices in 
𝑂(𝑑 = 3), 
optimizing with 
𝑝 = 𝑑 + 1. 



Phase transition for rank recovery? 

• It appears that even at high levels of noise, 

the SDP admits a rank 𝑑 solution. 

 

• This solves the hard problem… 
 

• How can we understand this? 



µ-Partial answer: single cycle synch 

For synchronization on a cycle, with measurements 

𝐶12, 𝐶23, 𝐶34, … , 𝐶𝑚1 ∈ 𝑂 𝑑 , 

if the product of the measurements 

𝑃 =  𝐶12𝐶23 …𝐶𝑚1 

has no eigenvalue -1, the SDP has a rank 𝑑 solution. 

Proof: write explicit solution 
and intuit a dual certificate. 



Three further ideas to think about 

• Robust works too: minimize sum of unsquared 
errors with Huber regularization, fast. 

• Fancy rounding technique: if rank(𝑋)  >  𝑑, 
project to rank 𝑑 and re-optimize. 

• Additional constraints could be handled by 
convex penalties (research in progress). 



Will you take the stairs next time? 

Code available on my webpage. 
Or e-mail me: nicolasboumal@gmail.com 





Robust synchronization: the least-
unsquared deviation approach (LUD) 

min
𝑅1,…,𝑅𝑚 

 𝐶𝑖𝑗 − 𝑅𝑖𝑅𝑗
𝑇

𝐹
𝑖∼𝑗

 

  

such that 𝑅𝑖𝑅𝑖
𝑇 = 𝐼𝑑 and det 𝑅𝑖 = 1. 

 

Wang & Singer 2013: 
Exact and stable recovery of rotations for robust synchronization. 



Robust synchronization: the least-
unsquared deviation approach (LUD) 

min
𝑋≽0 

 𝐶𝑖𝑗 − 𝑋𝑖𝑗 𝐹
𝑖∼𝑗

 

  

such that 𝑋𝑖𝑖 = 𝐼𝑑 and det 𝑅𝑖 = 1. 
 

Wang & Singer 2013: 
Exact and stable recovery of rotations for robust synchronization. 

Nonlinear cost: SDPLR does not apply. 
The authors use an adapted ADMM. 



Robust synchronization: 
Smoothing the cost with a Huber loss. 

min
𝑋≽0

 ℓ 𝐻𝑖𝑗 − 𝑋𝑖𝑗 𝐹
𝑖∼𝑗

 

  

such that 𝑋𝑖𝑖 = 𝐼𝑑 . 
ℓ 



Dealing with additional constraints? 

For example, when searching for permutations, 
  

enforcing 𝑋𝑖𝑖 = 𝐼𝑑 and 𝑋𝑖𝑗  doubly stochastic 
  

is useful, since if rank(𝑋)  =  𝑑, then the 𝑋𝑖𝑗’s 
are doubly stochastic and orthogonal, hence 
they are permutations. 



There are ways to accommodate 
more constraints in our algorithm… 
For example, enforce 𝐴𝑖 , 𝑋 ≥ 𝑏𝑖 by penalizing 
 

min
𝑖

 𝐴𝑖 , 𝑋 − 𝑏𝑖 ≈ −𝜖 log  𝑒−
𝐴𝑖, 𝑋 −𝑏𝑖

𝜖

𝑖
 

  

But it adds parameters and it reduces the 
competitive edge of the Riemannian approach. 
(research in progress) 


