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My focus today: bounded rank constraints

min
𝑋𝑋∈𝐑𝐑𝑚𝑚×𝑛𝑛 𝑓𝑓(𝑋𝑋) subject to rank 𝑋𝑋 ≤ 𝑘𝑘

Many applications (some with additional structure, e.g., 𝑋𝑋 ≽ 0):
Model order reduction
Recommender systems
Sensor network localization
Large scale linear matrix equations
...
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min
𝑋𝑋∈𝐑𝐑𝑚𝑚×𝑛𝑛 𝑓𝑓(𝑋𝑋) subject to rank 𝑋𝑋 ≤ 𝑘𝑘

Assume 𝑓𝑓 is smooth (let’s say 𝐶𝐶∞).

In general, finding a global minimum is NP-hard.*

Less ambitious goal of this talk: find a stationary point.

*See for example Gillis & Glineur, Low-rank matrix approximation with weights or missing data is NP-hard, SIMAX 2011



Stationarity in general

min
𝑥𝑥∈ℰ

𝑓𝑓(𝑥𝑥) subject to 𝑥𝑥 ∈ 𝒳𝒳

The tangent cone T𝑥𝑥𝒳𝒳 collects allowed directions of movement at 𝑥𝑥.

T𝑥𝑥𝒳𝒳 = lim
𝑖𝑖→∞

𝑥𝑥𝑖𝑖 − 𝑥𝑥
𝜏𝜏𝑖𝑖

: 𝑥𝑥𝑖𝑖 ⊂ 𝒳𝒳, 𝜏𝜏𝑖𝑖 ⊂ 𝐑𝐑+, 𝑥𝑥𝑖𝑖 → 𝑥𝑥, 𝜏𝜏𝑖𝑖 → 0

𝑥𝑥 is stationary if D𝑓𝑓 𝑥𝑥 𝑣𝑣 ≥ 0 for all 𝑣𝑣 ∈ T𝑥𝑥𝒳𝒳, i.e., −∇𝑓𝑓 𝑥𝑥 ∈ T𝑥𝑥𝒳𝒳 ∘.

This is equivalent to the property ProjT𝑥𝑥𝒳𝒳 −∇𝑓𝑓 𝑥𝑥 = 0.

Gray pictures: Ruszczyński, Nonlinear Optimization, 2006



Rank bound or equality: different geometries

The following set is a smooth manifold:

𝑋𝑋 ∈ 𝐑𝐑𝑚𝑚×𝑛𝑛: rank 𝑋𝑋 = 𝑘𝑘

However, the following set is not:

𝑋𝑋 ∈ 𝐑𝐑𝑚𝑚×𝑛𝑛: rank 𝑋𝑋 ≤ 𝑘𝑘

Let’s do a proof by picture for related case of symmetric 𝑋𝑋 ∈ 𝐑𝐑2×2.



𝑋𝑋 ∈ 𝐑𝐑2×2:𝑋𝑋 = 𝑋𝑋⊤ and rank 𝑋𝑋 ≤ 1 =
𝑥𝑥 𝑦𝑦
𝑦𝑦 𝑧𝑧 : 𝑥𝑥𝑥𝑥 − 𝑦𝑦2 = 0

The origin is the only 
matrix of rank zero.

There, the set is not smooth.

More generally, smoothness 
fails at all points of rank < 𝑘𝑘.



Rank constraints: mind the cliff

min
𝑋𝑋∈𝐑𝐑𝑚𝑚×𝑛𝑛 𝑓𝑓(𝑋𝑋) subject to rank 𝑋𝑋 ≤ 𝑘𝑘

If the iterates remain comfortably on the manifold of rank-𝑘𝑘, fine.
In practice, this is often the case.

However, if the iterates approach lesser-rank matrices, or worse, 
converge to one, then smooth optimization theory breaks down.

Optimization algorithms must be able to handle this eventuality.



Even computing stationary points is tricky

*Schneider & Uschmajew, SIOPT 2015,
Convergence Results for Projected Line-Search Methods on Varieties of Low-Rank Matrices Via Łojasiewicz Inequality

min
𝑋𝑋∈𝐑𝐑𝑚𝑚×𝑛𝑛 𝑓𝑓(𝑋𝑋) subject to rank 𝑋𝑋 ≤ 𝑘𝑘

There exist 𝑓𝑓 and 𝑋𝑋0 for which a projected gradient descent method* 
with Armijo backtracking produces iterates 𝑋𝑋1,𝑋𝑋2,𝑋𝑋3, … such that:

𝑋𝑋𝑖𝑖+1 = Proj𝐑𝐑≤𝑘𝑘𝑚𝑚×𝑛𝑛 𝑋𝑋𝑖𝑖 + 𝛼𝛼𝑖𝑖ProjT𝑋𝑋𝑖𝑖𝐑𝐑≤𝑘𝑘
𝑚𝑚×𝑛𝑛 −∇𝑓𝑓 𝑋𝑋𝑖𝑖
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min
𝑋𝑋∈𝐑𝐑𝑚𝑚×𝑛𝑛 𝑓𝑓(𝑋𝑋) subject to rank 𝑋𝑋 ≤ 𝑘𝑘

There exist 𝑓𝑓 and 𝑋𝑋0 for which a projected gradient descent method* 
with Armijo backtracking produces iterates 𝑋𝑋1,𝑋𝑋2,𝑋𝑋3, … such that:

1. rank 𝑋𝑋𝑖𝑖 = 𝑘𝑘 for all 𝑖𝑖,
2. The stationarity measure goes to zero as 𝑖𝑖 → ∞,
3. The sequence converges to a feasible matrix 𝑋𝑋,
4. Yet the limit 𝑋𝑋 is not stationary. – We might be far from any!



Apocalypses in general (algorithm agnostic)

min
𝑥𝑥∈ℰ

𝑓𝑓(𝑥𝑥) subject to 𝑥𝑥 ∈ 𝒳𝒳

The tangent cone T𝑥𝑥𝒳𝒳 collects allowed directions of movement at 𝑥𝑥.

𝑥𝑥 is stationary if ProjT𝑥𝑥𝒳𝒳 −∇𝑓𝑓 𝑥𝑥 = 0.

𝑥𝑥 is apocalyptic if there exists a sequence 𝑥𝑥𝑖𝑖 → 𝑥𝑥 and a function 𝑓𝑓
such that ProjT𝑥𝑥𝑖𝑖𝒳𝒳 −∇𝑓𝑓 𝑥𝑥𝑖𝑖 → 0 yet 𝑥𝑥 is not stationary.
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∘ ⊈ T𝑥𝑥𝒳𝒳 ∘

−∇𝑓𝑓
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A first take-away, and two positive notes

Apocalypses are a geometric feature of a search space 𝒳𝒳.
They cause blind spots for gradient-based methods.

Two positive notes:

Convex sets and manifolds with boundaries have no apocalypses.

Using second-order information of 𝑓𝑓, we can find stationary points.



To find stationary points, use lifts

Let ℳ = 𝐑𝐑𝑚𝑚×𝑘𝑘 × 𝐑𝐑𝑛𝑛×𝑘𝑘 and ℰ = 𝐑𝐑𝑚𝑚×𝑛𝑛.
Consider the smooth map 𝜑𝜑 𝐿𝐿,𝑅𝑅 = 𝐿𝐿𝑅𝑅⊤ from ℳ to ℰ.

Notice: 𝜑𝜑 ℳ = 𝑋𝑋 ∈ 𝐑𝐑𝑚𝑚×𝑛𝑛: rank 𝑋𝑋 ≤ 𝑘𝑘 : it is a smooth lift.

Thm*: If 𝐿𝐿,𝑅𝑅 is 2-critical for 𝑓𝑓 ∘ 𝜑𝜑, then 𝐿𝐿𝑅𝑅⊤ is stationary for 𝑓𝑓.

Thm: If 𝑓𝑓 has compact sublevel sets, then a modified version of the 
trust-region method on 𝑓𝑓 ∘ 𝜑𝜑 finds 2-critical points, always.

* Ha, Liu & Barber, SIOPT 2021,
An equivalence between critical points for rank constraints versus low-rank factorizations

ℳ

𝒳𝒳

𝜑𝜑 𝑓𝑓 ∘ 𝜑𝜑

𝐑𝐑𝑓𝑓



Summary

Optimization on nonsmooth sets: watch out for apocalypses.
Exist on bounded-rank variety; not on convex sets / manifolds with boundary.

We can use lifts to move the problem to a smooth manifold.
Can be done for other nonsmooth sets: desingularization, symmetry, shadows...

If the lift has nice properties (e.g., 2-critical ↦ stationary),
it tells us how to use the Hessian of 𝑓𝑓 to avoid apocalypses.
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