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The goal: estimate individual angles,
from pairwise comparisons (up to global shift)



The goal: estimate individual angles,
from pairwise comparisons (up to global shift)



Estimate phases from relative info

Unknowns

𝑧𝑧1, … , 𝑧𝑧𝑛𝑛 ∈ ℂ, with 𝑧𝑧1 = ⋯ = 𝑧𝑧𝑛𝑛 = 1

Data

Noisy measurements of relative phases:
𝐶𝐶𝑖𝑖𝑖𝑖 = 𝑧𝑧𝑖𝑖𝑧𝑧𝑗𝑗∗ + 𝜎𝜎𝑊𝑊𝑖𝑖𝑖𝑖

ℂ1𝑛𝑛



What does additive Gaussian 
noise mean here?

Noise affects the phase of the measurement

𝐶𝐶𝑖𝑖𝑖𝑖 = 𝑧𝑧𝑖𝑖𝑧𝑧𝑗𝑗∗ + 𝜎𝜎𝑊𝑊𝑖𝑖𝑖𝑖



Maximum likelihood estimation

𝑧𝑧 ∈ ℂ1𝑛𝑛, 𝐶𝐶 = 𝑧𝑧𝑧𝑧∗ + 𝜎𝜎𝜎𝜎

Under Gaussian noise, the MLE solves a least-squares

min
𝑥𝑥∈ℂ1𝑛𝑛

𝐶𝐶 − 𝑥𝑥𝑥𝑥∗ F
2 ≡ max

𝑥𝑥∈ℂ1𝑛𝑛
𝑥𝑥∗𝐶𝐶𝐶𝐶



The MLE is NP-hard to compute

The optimization problem

max
𝑥𝑥∈ℂ1𝑛𝑛

𝑥𝑥∗𝐶𝐶𝐶𝐶

has a quadratic cost 𝑥𝑥∗𝐶𝐶𝐶𝐶, and

nonconvex quadratic constraints 𝑥𝑥𝑖𝑖 2 = 1.



And yet, it’s pretty easy to 
solve… in the right regime

Through SDP relaxation Via generalized power method

With Riemannian optimization Using dominant eigenvector



Classic lifting trick: rewrite 
everything in terms of 𝑋𝑋 = 𝑥𝑥𝑥𝑥∗

max
𝑥𝑥∈ℂ1𝑛𝑛

𝑥𝑥∗𝐶𝐶𝐶𝐶

The cost
𝑥𝑥∗𝐶𝐶𝐶𝐶 = Trace 𝑥𝑥∗𝐶𝐶𝐶𝐶 = Trace(𝐶𝐶𝐶𝐶)

The constraints
𝑥𝑥𝑖𝑖 2 = 1 ⇔ 𝑥𝑥𝑖𝑖𝑥𝑥𝑖𝑖∗ = 1 ⇔ 𝑋𝑋𝑖𝑖𝑖𝑖 = 1

The link
∃𝑥𝑥:𝑋𝑋 = 𝑥𝑥𝑥𝑥∗ ⇔ 𝑋𝑋 ≽ 0, rank 𝑋𝑋 = 1



Suggests a semidefinite relaxation
Recast our problem

max
𝑥𝑥∈ℂ1𝑛𝑛

𝑥𝑥∗𝐶𝐶𝐶𝐶

Into

max
𝑋𝑋∈ℂ𝑛𝑛×𝑛𝑛

Trace(𝐶𝐶𝐶𝐶)
diag 𝑋𝑋 = 𝟏𝟏
𝑋𝑋 ≽ 0
rank 𝑋𝑋 = 1



The SDP seems tight for 𝜎𝜎 ≤ ~ 𝑛𝑛

Noise
Level

𝜎𝜎

Number of phases 𝑛𝑛

Tight: SDP solution has rank 1

Not tight



We want to explain this theoretically;
First, via a simpler relaxation.

Through SDP relaxation Via generalized power method

With Riemannian optimization Using dominant eigenvector



A spectral relaxation
Relax our problem from

max
𝑥𝑥∈ℂ𝑛𝑛

𝑥𝑥∗𝐶𝐶𝐶𝐶 subject to 𝑥𝑥1 = ⋯ = 𝑥𝑥𝑛𝑛 = 1

to

max
𝑥𝑥∈ℂ𝑛𝑛

𝑥𝑥∗𝐶𝐶𝐶𝐶 subject to 𝑥𝑥1 2 + ⋯+ 𝑥𝑥𝑛𝑛 2 = 𝑛𝑛

That is: compute dominant eigenvector of 𝐶𝐶.



The eigenvector estimator is not 
the MLE, but it is a good estimator
We prove (with high probability for large n):

𝑥𝑥 − 𝑧𝑧 2 ≤ 12𝜎𝜎

𝑥𝑥 − 𝑧𝑧 ∞ ≤ ~𝜎𝜎 log 𝑛𝑛
𝑛𝑛

—if 𝜎𝜎 ≤ ~ 𝑛𝑛
log 𝑛𝑛

(With global phase fixed by: 𝑧𝑧∗𝑥𝑥 = 𝑧𝑧∗𝑥𝑥 .)



Eigenvector 𝑥𝑥: error in 2-norm

The eigv. beats the signal: 𝑧𝑧∗𝐶𝐶𝐶𝐶 ≤ 𝑥𝑥∗𝐶𝐶𝐶𝐶.
Hence, with 𝐶𝐶 = 𝑧𝑧𝑧𝑧∗ + 𝜎𝜎𝜎𝜎 and 𝑊𝑊 op ≤ 3 𝑛𝑛,

𝑛𝑛2 + 𝜎𝜎𝑧𝑧∗𝑊𝑊𝑊𝑊 ≤ 𝑧𝑧∗𝑥𝑥 2 + 𝜎𝜎𝑥𝑥∗𝑊𝑊𝑊𝑊

𝑛𝑛2 − 𝑧𝑧∗𝑥𝑥 2 ≤ 𝜎𝜎 𝑥𝑥∗𝑊𝑊𝑊𝑊 − 𝑧𝑧∗𝑊𝑊𝑊𝑊
= 𝜎𝜎𝜎 𝑥𝑥 − 𝑧𝑧 ∗𝑊𝑊(𝑥𝑥 + 𝑧𝑧)
≤ 𝜎𝜎 𝑥𝑥 − 𝑧𝑧 2 𝑊𝑊 op 𝑥𝑥 + 𝑧𝑧 2

Divide by 𝑛𝑛 + 𝑧𝑧∗𝑥𝑥 ≥ 𝑛𝑛, use 𝑥𝑥 − 𝑧𝑧 2
2 = 2(𝑛𝑛 − |𝑧𝑧∗𝑥𝑥|):

𝑥𝑥 − 𝑧𝑧 2 ≤ 12𝜎𝜎



𝐶𝐶 = 𝑧𝑧𝑧𝑧∗ + 𝜎𝜎𝜎𝜎 𝐶𝐶𝐶𝐶 = 𝜆𝜆𝜆𝜆

𝑥𝑥𝑚𝑚 − 𝑧𝑧𝑚𝑚 =
𝐶𝐶𝐶𝐶 𝑚𝑚

𝜆𝜆
− 𝑧𝑧𝑚𝑚

=
𝑧𝑧∗𝑥𝑥
𝜆𝜆
𝑧𝑧𝑚𝑚 +

𝜎𝜎
𝜆𝜆
𝑊𝑊𝑊𝑊 𝑚𝑚 − 𝑧𝑧𝑚𝑚

≤
𝑧𝑧∗𝑥𝑥
𝜆𝜆

− 1 +
𝜎𝜎
𝜆𝜆

𝑊𝑊𝑊𝑊 𝑚𝑚

Eigenvector 𝑥𝑥: error in ∞-norm



The first part is easy

𝑧𝑧∗𝑥𝑥
𝜆𝜆

− 1 ≤
72𝜎𝜎2 + 3𝜎𝜎 𝑛𝑛
𝑛𝑛 − 3𝜎𝜎 𝑛𝑛

≤ ~
𝜎𝜎
𝑛𝑛

From 2-norm work:

𝑛𝑛 − 72𝜎𝜎2 ≤ 𝑧𝑧∗𝑥𝑥 ≤ 𝑛𝑛

From 𝐶𝐶 = 𝑧𝑧𝑧𝑧∗ + 𝜎𝜎𝜎𝜎 and 𝑊𝑊 op ≤ 3 𝑛𝑛:

𝑛𝑛 − 3𝜎𝜎 𝑛𝑛 ≤ 𝜆𝜆 ≤ 𝑛𝑛 + 3𝜎𝜎 𝑛𝑛

𝜎𝜎 ≤ ~
𝑛𝑛

log𝑛𝑛



It comes down to 𝑊𝑊𝑊𝑊 ∞ ≤ ~ 𝑛𝑛 log𝑛𝑛

𝑊𝑊 and 𝑧𝑧 are independent:
this is small enough!

𝑥𝑥 and 𝑧𝑧 can be too far 
apart for a 2-norm 
bound to work here…

This is delicate because 𝑥𝑥 is a dominant eigenvector 
of 𝐶𝐶 = 𝑧𝑧𝑧𝑧∗ + 𝜎𝜎𝜎𝜎:

𝑥𝑥 and 𝑊𝑊 are statistically dependent

Something that doesn’t work but is informative:

𝑊𝑊𝑊𝑊 ∞ ≤ 𝑊𝑊𝑧𝑧 ∞ + 𝑊𝑊(𝑥𝑥 − 𝑧𝑧) ∞



Lessons learned from the failed
attempt

𝑊𝑊𝑊𝑊 ∞ ≤ 𝑊𝑊𝑊𝑊 ∞ + 𝑊𝑊(𝑥𝑥 − 𝑧𝑧) ∞

This could work if instead of comparing 𝑥𝑥 to 𝑧𝑧 we 
compared 𝑥𝑥 to another vector, independent of 𝑊𝑊 as 
well, yet much closer.

The main idea:

Introduce auxiliary problems



Auxiliary problems

Let 𝑊𝑊𝑚𝑚 be 𝑊𝑊 with 0’s in row and column 𝑚𝑚.

Let 𝐶𝐶𝑚𝑚 = 𝑧𝑧𝑧𝑧∗ + 𝜎𝜎𝑊𝑊𝑚𝑚.

Let 𝑥𝑥𝑚𝑚 be the eigenvector estimator for 𝐶𝐶𝑚𝑚.

𝑥𝑥𝑚𝑚 is independent of the 𝑚𝑚th row of 𝑊𝑊, and
𝑥𝑥𝑚𝑚 is very close to 𝑥𝑥



Using the auxiliary problems to 
bound 𝑊𝑊𝑊𝑊 ∞ ≤ ~ 𝑛𝑛 log𝑛𝑛

𝑊𝑊𝑊𝑊 𝑚𝑚 = 𝑤𝑤𝑚𝑚∗ 𝑥𝑥 ≤ 𝑤𝑤𝑚𝑚∗ 𝑥𝑥𝑚𝑚 + 𝑤𝑤𝑚𝑚∗ 𝑥𝑥 − 𝑥𝑥𝑚𝑚

𝑤𝑤𝑚𝑚∗ 𝑥𝑥𝑚𝑚 ≤ ~ 𝑛𝑛 owing to independence

𝑤𝑤𝑚𝑚∗ 𝑥𝑥 − 𝑥𝑥𝑚𝑚 ≤ ~ 𝑛𝑛 𝑥𝑥 − 𝑥𝑥𝑚𝑚 2

Show 𝑥𝑥 − 𝑥𝑥𝑚𝑚 2 ≤ ~1, then take maximum over 𝑚𝑚.

𝜎𝜎 ≤ ~
𝑛𝑛

log𝑛𝑛



Showing 𝑥𝑥 and 𝑥𝑥𝑚𝑚 are close is a 
job for Davis-Kahan

𝐶𝐶 = 𝑧𝑧𝑧𝑧∗ + 𝜎𝜎𝑊𝑊𝑚𝑚 + 𝜎𝜎Δ𝑚𝑚

𝑥𝑥 is dominant eigenvector of 𝐶𝐶
𝑥𝑥𝑚𝑚 is dominant eigenvector of 𝐶𝐶𝑚𝑚

Davis-Kahan: 𝛿𝛿 is eigengap 𝜆𝜆1 − 𝜆𝜆2 of 𝐶𝐶𝑚𝑚,

𝑥𝑥 − 𝑥𝑥𝑚𝑚 2 ≤ 2
𝜎𝜎Δ𝑚𝑚𝑥𝑥𝑚𝑚 2

𝛿𝛿 − 𝜎𝜎Δ𝑚𝑚 2
≤ ~

𝜎𝜎
𝑛𝑛

Δ𝑚𝑚𝑥𝑥𝑚𝑚 2 ≤ ~
𝜎𝜎
𝑛𝑛

𝜎𝜎 ≤ ~
𝑛𝑛

log𝑛𝑛



Putting it all together

𝑥𝑥𝑚𝑚 − 𝑧𝑧𝑚𝑚 ≤ ~
𝜎𝜎
𝑛𝑛

+
𝜎𝜎
𝑛𝑛

𝑊𝑊𝑊𝑊 𝑚𝑚

𝑊𝑊𝑊𝑊 𝑚𝑚 ≤ ~ 𝑛𝑛 + 𝜎𝜎

Take union bound over 𝑚𝑚; still with high probability:

𝑥𝑥 − 𝑧𝑧 ∞ ≤ ~𝜎𝜎
log𝑛𝑛
𝑛𝑛

𝜎𝜎 ≤ ~
𝑛𝑛

log𝑛𝑛



Showed eigenvector method is great, 
but still doesn’t explain SDP tightness.

Through SDP relaxation Via generalized power method

With Riemannian optimization Using dominant eigenvector



General idea: dual certification

Lemma:
𝑋𝑋 solves the SDP if

𝑆𝑆 𝑋𝑋 = ℜ ddiag 𝐶𝐶𝐶𝐶 − 𝐶𝐶 ≽ 0

Proof: 0 ≤ Tr 𝑆𝑆 𝑋𝑋 𝑋𝑋′ ≤ Tr 𝐶𝐶𝐶𝐶 − Tr(𝐶𝐶𝑋𝑋′).

𝑆𝑆 𝑥𝑥𝑥𝑥∗ ≽ 0 ⇒ 𝑥𝑥 is optimal and computable.

max
𝑋𝑋∈ℂ𝑛𝑛×𝑛𝑛

Trace(𝐶𝐶𝐶𝐶)
diag 𝑋𝑋 = 𝟏𝟏
𝑋𝑋 ≽ 0



General idea: dual certification

Let 𝑥𝑥 be the MLE, solution of

max
𝑥𝑥∈ℂ1𝑛𝑛

𝑥𝑥∗𝐶𝐶𝐶𝐶

We aim to prove that 𝑆𝑆 𝑥𝑥𝑥𝑥∗ ≽ 0.

Challenge: we don’t know 𝑥𝑥.

𝑆𝑆 𝑋𝑋 = ℜ ddiag 𝐶𝐶𝐶𝐶 − 𝐶𝐶



𝑥𝑥 (the MLE)

𝑧𝑧 (the signal)

level sets of 𝑥𝑥∗𝐶𝐶𝐶𝐶

Step 1: characterize the MLE 𝑥𝑥

𝑥𝑥 is second-order
critical, close to 𝑧𝑧.



Step 1: characterize the MLE 𝑥𝑥

Standard necessary optimality conditions:

1. Gradient equals zero

2. Hessian is positive semidefinite

Here: it’s the same, with Riemannian derivatives



Step 1: characterize the MLE 𝑥𝑥

Gradient is zero iff 𝑆𝑆𝑆𝑆 = 0.

Hessian is positive semidefinite iff
𝑆𝑆 is positive semidefinite on tangent space.

Then, ddiag 𝐶𝐶𝐶𝐶𝑥𝑥∗ ≥ 0.

𝑆𝑆 𝑋𝑋 = ℜ ddiag 𝐶𝐶𝐶𝐶 − 𝐶𝐶



Step 2: certify

Assuming 𝑥𝑥 is second-order critical and close to 𝑧𝑧, 
show that

𝑆𝑆 = ddiag 𝐶𝐶𝐶𝐶𝑥𝑥∗ − 𝐶𝐶 ≽ 0.

For all 𝑢𝑢 ∈ ℂ𝑛𝑛 with 𝑢𝑢∗𝑥𝑥 = 0, a few lines give:

𝑢𝑢∗𝑆𝑆𝑆𝑆 ≥ 𝑢𝑢 2
2 𝑛𝑛 − 𝜎𝜎 216𝜎𝜎 + 3 𝑛𝑛 + 𝑊𝑊𝑊𝑊 ∞

(Used 𝑊𝑊 op ≤ 3 𝑛𝑛 again.)



Step 2: certify

Sufficient condition for tightness of the SDP:

𝑛𝑛 ≥ 𝜎𝜎 216𝜎𝜎 + 3 𝑛𝑛 + 𝑊𝑊𝑊𝑊 ∞

Target: show 𝑊𝑊𝑊𝑊 ∞ ≤ ~ 𝑛𝑛 log𝑛𝑛 .

Similar to eigenvector situation, need to control 
𝑊𝑊𝑊𝑊 ∞ where this time 𝑥𝑥 is the MLE.



We want to control 𝑊𝑊𝑊𝑊 ∞

For 𝑥𝑥 the dominant eigenvector of 𝐶𝐶,
we can fully characterize 𝑥𝑥:

𝐶𝐶𝐶𝐶 = 𝜆𝜆𝜆𝜆 with 𝜆𝜆 ≈ 𝑛𝑛, and we have Davis-Kahan.

For 𝑥𝑥 the MLE, we have neither.

Strategy: track generalized power method.



Generalized power method

𝑥𝑥0 = phase 𝑥𝑥eig
𝑥𝑥𝑘𝑘+1 = phase 𝐶𝐶𝑥𝑥𝑘𝑘 , 𝑘𝑘 = 0,1, …

Set up auxiliary sequences same as before.

Iterates of aux. sequences remain close to each other, 
close to 𝑧𝑧 in 2-norm, and such that 𝑊𝑊𝑊𝑊 ∞ is small 
enough.

Show convergence to MLE: deduce 𝑊𝑊𝑊𝑊 ∞ is small.



Shows SDP is tight, and generalized 
power method solves it efficiently.

Through SDP relaxation Via generalized power method

With Riemannian optimization Using dominant eigenvector



There is still a gap for the 
Riemannian optimization approach
Best theorem so far (despite better numerics):

For the MLE, if 𝜎𝜎 ≤ ~𝑛𝑛1/4, second-order necessary 
optimality conditions are sufficient for optimality, whp.

See Huikang Liu, Man-Chung Yue and Anthony Man-Cho So, 
SIOPT 2017
On the Estimation Performance and Convergence Rate 
of the Generalized Power Method for Phase 
Synchronization



Take home messages

Under white noise, phases are easy to synchronize.

Auxiliary problems (or replicas) can be an efficient 
proof technique to handle statistical dependence.

More work is needed for the Riemannian approach.



For details, from older to newer
1. With Bandeira & Singer, Math. Prog. 2017

Tightness of the maximum likelihood semidefinite 
relaxation for angular synchronization

2. SIOPT 2016
Nonconvex phase synchronization

3. With Joe Zhong, SIOPT 2018
Near-optimal bounds for phase synchronization
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