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This is about semidefinite programs

min
𝑋𝑋:𝑛𝑛×𝑛𝑛

Tr 𝐴𝐴𝐴𝐴 s. t. Lin 𝑋𝑋 = 𝑏𝑏,𝑋𝑋 ≽ 0

But not just “any” SDP.
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min
𝑋𝑋:𝑛𝑛×𝑛𝑛

Tr 𝐴𝐴𝐴𝐴 s. t. diag 𝑋𝑋 = 𝟏𝟏,𝑋𝑋 ≽ 0

2D SLAM
Phase retrieval

Max-Cut
Community detection (SBM)

Picture credits—Max-Cut: wikipedia; SBM: Abbe et al.?; SLAM: David Rosen’s thesis



Convex, but in high dimension

Standard algorithms to solve SDPs iterate on 
full-rank, dense matrices 𝑋𝑋,

And need to maintain positive definiteness.

This requires memory and time.
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Max-Cut SDP has a low-rank solution

min
𝑋𝑋

Tr 𝐴𝐴𝐴𝐴 s. t. diag 𝑋𝑋 = 𝟏𝟏,𝑋𝑋 ≽ 0

Shapiro ‘82, Grone et al. ‘90, Pataki ‘94, Barvinok ‘95
There is an optimal 𝑋𝑋 whose rank 𝑟𝑟 satisfies

𝑟𝑟(𝑟𝑟 + 1)
2

≤ 𝑛𝑛

A fortiori, 𝑟𝑟 ≤ 2𝑛𝑛.
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This justifies restricting the rank

min
𝑋𝑋

Tr 𝐴𝐴𝐴𝐴 s. t. diag 𝑋𝑋 = 𝟏𝟏,𝑋𝑋 ≽ 0, rank 𝑋𝑋 ≤ 𝑝𝑝

Parameterize as 𝑋𝑋 = 𝑌𝑌𝑌𝑌𝑇𝑇 with 𝑌𝑌 of size 𝑛𝑛 × 𝑝𝑝:

min
𝑌𝑌:𝑛𝑛×𝑝𝑝

Tr 𝐴𝐴𝐴𝐴𝑌𝑌𝑇𝑇 s. t. diag 𝑌𝑌𝑌𝑌𝑇𝑇 = 𝟏𝟏

Lower dimension and no conic constraint!
Burer & Monteiro ’03, ’05

But nonconvex…
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Burer-Monteiro’s early work (’03, ’05)

“How large must we take 𝑝𝑝 so that the local
minima map to solutions of the SDP?

Our theorem asserts we need only 𝑝𝑝 𝑝𝑝+1
2

> 𝑛𝑛

(with the important caveat that some faces of the
SDP […] can harbor non-global local minima).”
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Our main result for this SDP

min
𝑌𝑌:𝑛𝑛×𝑝𝑝

Tr 𝐴𝐴𝑌𝑌𝑌𝑌𝑇𝑇 s. t. diag 𝑌𝑌𝑌𝑌𝑇𝑇 = 𝟏𝟏

If 
𝑝𝑝(𝑝𝑝+1)

2
> 𝑛𝑛, for almost all 𝐴𝐴, all 2° points are optimal.

(If 𝑝𝑝 > 𝑛𝑛/2, for all 𝐴𝐴, all 2° points are optimal.)

With Bandeira & Voroninski, arXiv 1804.02008, to appear in CPAM

2° point: second-order critical point



The search space is smooth

min
𝑌𝑌:𝑛𝑛×𝑝𝑝

Tr 𝐴𝐴𝐴𝐴𝑌𝑌𝑇𝑇 s. t. diag 𝑌𝑌𝑌𝑌𝑇𝑇 = 𝟏𝟏

Constraints → rows of 𝑌𝑌 have unit norm.

The search space is a product of
spheres: smooth cost function
on a smooth manifold.

Journée, Bach, Absil, Sepulchre ’10
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Necessary optimality conditions are 
straightforward on smooth spaces
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min
𝑌𝑌:𝑛𝑛×𝑝𝑝

Tr 𝐴𝐴𝐴𝐴𝑌𝑌𝑇𝑇 s. t. diag 𝑌𝑌𝑌𝑌𝑇𝑇 = 𝟏𝟏

1° Proj𝑌𝑌𝐴𝐴𝐴𝐴 = 𝑆𝑆𝑆𝑆 = 0, with
𝑆𝑆 = 𝐴𝐴 − ddiag 𝐴𝐴𝐴𝐴𝑌𝑌𝑇𝑇

2° 𝑌̇𝑌, 𝑆𝑆𝑌̇𝑌 ≥ 0 for all 𝑌̇𝑌 tangent:
T𝑌𝑌𝑀𝑀 = 𝑌̇𝑌: diag 𝑌̇𝑌𝑌𝑌𝑇𝑇 + 𝑌𝑌𝑌̇𝑌𝑇𝑇 = 0



Main proof ingredients

1. 𝑋𝑋 = 𝑌𝑌𝑌𝑌𝑇𝑇 is optimal iff

𝑆𝑆 = 𝐴𝐴 − ddiag 𝐴𝐴𝑋𝑋 ≽ 0

2. If 𝑌𝑌 is a 2° point and rank deficient, 𝑆𝑆 ≽ 0

3. If 𝑝𝑝(𝑝𝑝+1)
2

> 𝑛𝑛, for almost all 𝐴𝐴,
all critical points 𝑌𝑌 are rank deficient.

For all feasible �𝑋𝑋,
0 ≤ Tr 𝑆𝑆 �𝑋𝑋

= Tr 𝐴𝐴 �𝑋𝑋 − Tr ddiag 𝐴𝐴𝑋𝑋 �𝑋𝑋
= Tr 𝐴𝐴 �𝑋𝑋 − Tr 𝐴𝐴𝑋𝑋 .
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Main result for smooth SDPs

min
𝑋𝑋:𝑛𝑛×𝑛𝑛

Tr 𝐴𝐴𝐴𝐴 s. t. Lin 𝑋𝑋 = 𝑏𝑏,𝑋𝑋 ≽ 0

min
𝑌𝑌:𝑛𝑛×𝑝𝑝

Tr 𝐴𝐴𝐴𝐴𝑌𝑌𝑇𝑇 s. t. Lin 𝑌𝑌𝑌𝑌𝑇𝑇 = 𝑏𝑏

If the search space in 𝑋𝑋 is compact
and the search space in 𝑌𝑌 is a manifold,
and if  𝑝𝑝(𝑝𝑝+1)

2
> #constraints, then,

for almost all 𝐴𝐴, all 2° points are optimal.
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With Bandeira & Voroninski, arXiv 1804.02008, to appear in CPAM



min
𝑋𝑋:𝑛𝑛×𝑛𝑛

Tr 𝐴𝐴𝐴𝐴 s. t. 𝑋𝑋𝑖𝑖𝑖𝑖 = 𝐼𝐼𝑑𝑑 ,𝑋𝑋 ≽ 0
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Structure from motion (SfM)

3D SLAM

3D registration

Cryo-EM

Picture credits—SfM: Princeton Vision & Robotics group; Cryo: ?; SLAM: David Rosen; Registration: Stanford 3D scanning repository



Approximate second-order points?

Our main result states exact 2° points are optimal 

for almost all 𝐴𝐴, for 𝑝𝑝 𝑝𝑝+1
2

> 𝑚𝑚 (conditions apply).

In pratice, can only compute approximate 2° points.

Are they approximately optimal?
Well, there’s the issue of “bad 𝐴𝐴s”…

14



If bad 𝐴𝐴s exist, need to be careful

𝐴𝐴 is bad if there exists a suboptimal 2° point 𝑌𝑌.

Minuscule random perturbations of 𝐴𝐴 kill all 
such points, almost surely…

But 𝑌𝑌 is still approximately 2° point,
while its suboptimality didn’t change much…
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If bad 𝐴𝐴s exist,

Then, there exists a non-zero measure set of 𝐴𝐴s

For which approximate 2° points are not all 
approximately optimal with 𝑝𝑝 𝑝𝑝+1

2
> 𝑚𝑚.

How thick is this set?
Might it force us to take 𝑝𝑝 ≫ 𝑚𝑚?
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Smoothed analysis

Deterministically, an approximate 2° point 
which is approximately rank deficient is
approximately optimal.

With 𝑝𝑝 = �Ω( 𝑚𝑚), with high probability upon 
random perturbation of 𝐴𝐴, all approximate 
1° points are approximately rank deficient.
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With Bhojanapalli, Jain & Netrapalli,
arXiv 1803.00186, COLT2018

With Jelassi & Pumir, arXiv 1806.03763, NIPS2018



How to solve it?

Under the smoothness assumption,
the non-convex problem
is optimization of a
smooth cost
over a
smooth manifold.

Ad: upcoming grad course
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Taking a close look at

gradient descent
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www.manopt.org

An excellent book
Optimization algorithms on 
matrix manifolds

A Matlab toolbox

With Mishra, Absil & Sepulchre
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Iteration complexity for computing
approximate 2° points on manifolds
Riemannian trust regions
arXiv:1605.08101, IMAJNA

𝑂𝑂 𝜀𝜀−2 for small gradient
𝑂𝑂 𝜀𝜀−3 for second-order too

Adaptive regularization with cubics (ARC)
arXiv:1806.00065

𝑂𝑂 𝜀𝜀−1.5 for small gradient
𝑂𝑂 𝜀𝜀−3 for second-order too

(Under Lipschitz conditions, satisfied on compact manifolds.) 28



Take home messages

The Burer-Monteiro low-rank approach 
works, generically, for smooth, compact SDPs.

Solve them with optimization on manifolds.

To ponder: can we relax the assumptions?
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