
Cramér-Rao bounds
for synchronisation of rotations

Nicolas Boumal, Inria & ENS Paris

Joint work with A. Singer, P.-A. Absil and V.D. Blondel



Rotations to estimate:

𝑅1, 𝑅2, … , 𝑅𝑁 ∈ SO(𝑛)

Measurements:

𝐻𝑖𝑗 ≈ 𝑅𝑖𝑅𝑗
−1

SO 𝑛 = {𝑅 ∈ ℝ𝑛×𝑛: 𝑅𝑇𝑅 = 𝐼 and det 𝑅 = +1}
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Bundler: Structure from Motion (SfM), Noah Snavely

Structure from motion



Stanford scanning repository

3D scan registration



https://people.csail.mit.edu/gdp/cryoem.html

Cryo-Electron Microscopy

Electron beam
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Fundamental limits?

The CRB proves no algorithm can go here



The measurement graph is key



Where should we place anchors?

Node size is proportional to lower-bound on variance



How much are new data worth?



Cramér-Rao bounds (CRB), 1945

Bound on covariance 𝐶 of unbiased estimators:

𝐶 ≽ 𝐹−1

Fisher information 𝐹 measures the average info 
in the measurements w.r.t. the parameters.



CRB’s on manifolds

The parameter space is a manifold: SO 𝑛 𝑁

Work on tangent space, handle curvature
Smith ‘05

Without anchors, Fisher information is singular

Work on the quotient manifold
Xavier & Barroso ‘05



CRB’s on manifolds

Approximate CRB:

𝐶 ≽ 𝐹+

Curvature is negligible at reasonable SNR

Pseudo-inversion rightly ignores the singularity



A wide family of noise models

𝐻𝑖𝑗 = 𝑍𝑖𝑗 ⋅ 𝑅𝑖𝑅𝑗
−1 with    𝑍𝑖𝑗 ∼ 𝑓𝑖𝑗: SO 𝑛 → ℝ

A1. 𝑓𝑖𝑗 is smooth and positive

A2. Noise is independent across edges

A3. 𝑓𝑖𝑗 𝑄𝑍𝑄−1 = 𝑓𝑖𝑗(𝑍)
Think: isotropic and unbiased
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Fisher information measures 
likelihood sensitivity

𝐹  𝑹,  𝑹 = 𝐄 DL 𝑹 [  𝑹]2

With L the log-likelihood, assuming independence:

L  𝑹 =  𝑖∼𝑗 log 𝑓𝑖𝑗(𝐻𝑖𝑗
 𝑅𝑗  𝑅𝑖

−1)

𝑹

 𝑹
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𝑍𝑖𝑗 ⋅ 𝑅𝑖𝑅𝑗
−1



Independence structures 𝐹

Non-commutativity makes it a bit technical.

For SO(2) and Langevin noise: (𝑓 ∝ exp(𝜅 ⋅ Tr(𝑍)))

𝐹𝑖𝑗 = 𝜅2 
𝑘∼𝑖

 
ℓ∼𝑗

𝐄 𝑍𝑖𝑘 , Ω𝑗 ⋅ 𝑍𝑗ℓ, Ω𝑗
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Disjoint nodes contribute a 0

𝑖

𝑗

𝐹𝑖𝑗 = 0



Neighbors contribute −𝑤

𝑖

𝑗

𝐹𝑖𝑗 = −𝑤



Individuals contribute their degree

𝑖 = 𝑗

𝐹𝑖𝑖 = 𝑤 ⋅ deg𝑖



Fisher information is a Laplacian

Assuming independent, isotropic and unbiased noise,

𝐹 = 𝐿 = 𝐷 − 𝐴

is the weighted Laplacian of the graph.

Remarkably, 𝐹 does not depend on the true rotations.



The anchored case

𝐶 ≽ 𝐿+

For individual nodes:

𝐄 dist2(𝑅𝑖 ,  𝑅𝑖) ≥ 𝑑 ⋅ 𝐿𝑖𝑖
+

Random walk from 𝒊 to 
any anchor.

Node size is proportional to lower-bound on variance



The anchor-free case

𝐶 ≽ 𝐿+

For pairs of nodes:

𝐄 dist2(𝑅𝑖𝑅𝑗
−1,  𝑅𝑖  𝑅𝑗

−1)

≥ 𝑑 ⋅ 𝑒𝑖 − 𝑒𝑗
𝑇
𝐿+ 𝑒𝑖 − 𝑒𝑗

Random walk from 𝒊 to 𝒋
and back again.
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Conclusions

The Laplacian-structured CRB gives a firm qualitative
and quantitative grasp on synchronisation.

This was understood for the translation group and
for in-plane rotations: both commutative.

This work moves to a non-commutative group.


