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Synchronisation of rotations

Rotations to estimate:
R{,R,,...,Ry € SO(n)
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SO(n) = {R € R"™™:RTR =1 and detR = +1}



Structure from motion

Bundler: Structure from Motion (SfM), Noah Snavely
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Fundamental limits?

Maximum likelihood estimator (proxy)

The CRB proves no algorithm can go here

Poor SNR

High SNR



The measurement graph is key
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Where should we place anchors?
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Node size is proportional to lower-bound on variance



How much are new data worth?
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Cramér-Rao bounds (CRB), 1945

Bound on covariance C of unbiased estimators:
C=F1

Fisher information FF measures the average info
in the measurements w.r.t. the parameters.
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The parameter space is a manifold: SO(n)V .

CRB’s on manifolds

Work on tangent space, handle curvature
Smith ‘05

Without anchors, Fisher information is singular

Work on the quotient manifold
Xavier & Barroso ‘05



CRB’s on manifolds

Approximate CRB:
C=F"
Curvature is negligible at reasonable SNR

Pseudo-inversion rightly ignores the singularity



A wide family of noise models
Hij = Zl] . Rl'Rj_l with Zl] ~ fl]SO(Tl) - R

Al. f;;is smooth and positive

A2. Noise is independent across edges

A3. f;;(QZQ™H) = f;;(2) R @

Think: isotropic and unbiased 7 e



Fisher information measures

likelihood sensitivity o
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F|R R| = E{DL(R)[R)?}

With L the log-likelihood, assuming independence:
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Independence structures F

Non-commutativity makes it a bit technical.

For SO(2) and Langevin noise: (f « exp(x - Tr(Z)))

Fy=nt) D E(Zu0)(Z00)
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Disjoint nodes contribute a 0




Neighbors contribute —w
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Individuals contribute their degree




Fisher information is a Laplacian

Assuming independent, isotropic and unbiased noise,
F=L=D-A
is the weighted Laplacian of the graph.

Remarkably, F does not depend on the true rotations.



The anchored case

C=L"
LooH =
S ' For individual nodes:
i E{dist?(R;,R)} = d - L};
D m - Random walk from i to
Co ° any anchor.

Node size is proportional to lower-bound on variance



The anchor-free case

C>L"

For pairs of nodes:

E{dist?(R;R; ', R,R" D)}
= d - (ei — ej)TL+(el- — e])

Random walk from i to j
and back again.



The anchor-free case
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E{dist?(R;R; ', R,R" D)}
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Conclusions

The Laplacian-structured CRB gives a firm qualitative
and quantitative grasp on synchronisation.

This was understood for the translation group and
for in-plane rotations: both commutative.

This work moves to a non-commutative group.



