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This talk is about fast local convergence

min
𝑥𝑥∈𝐑𝐑𝑛𝑛

𝑓𝑓 𝑥𝑥

We use algorithms to compute 𝑥𝑥 ∈ 𝐑𝐑𝑛𝑛 such that 𝑓𝑓 𝑥𝑥 ∈ 𝐑𝐑 is small.

Ideally, we want a global minimum, but that’s hard. Local will do.
𝑥𝑥 is a local minimum if 𝑓𝑓 𝑥𝑥 ≤ 𝑓𝑓(𝑦𝑦) for all 𝑦𝑦 in a neighborhood of 𝑥𝑥.

Say 𝑓𝑓 is 𝐶𝐶2 (continuous Hessian). Focus on local convergence rates.
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A simple look at the one-dimensional case

Say 𝑓𝑓 𝑥𝑥 = 𝑥𝑥4.     Minimizer is 𝑥𝑥∗ = 0.

Then ∇𝑓𝑓 𝑥𝑥 = 4𝑥𝑥3 and ∇2𝑓𝑓 𝑥𝑥 = 12𝑥𝑥2.

Gradient descent: 𝑥𝑥𝑘𝑘+1 = 𝑥𝑥𝑘𝑘 − 𝛼𝛼∇𝑓𝑓 𝑥𝑥𝑘𝑘 = 1 − 4𝛼𝛼𝑥𝑥𝑘𝑘2 𝑥𝑥𝑘𝑘.
Only sublinear convergence (if 0 < 𝛼𝛼 < 1/2𝑥𝑥02).
Newton’s method: 𝑥𝑥𝑘𝑘+1 = 𝑥𝑥𝑘𝑘 − ∇2𝑓𝑓 𝑥𝑥𝑘𝑘 −1 ∇𝑓𝑓 𝑥𝑥𝑘𝑘 = 2

3
𝑥𝑥𝑘𝑘 .

Only linear convergence.

3



The culprit: ∇2𝑓𝑓 𝑥𝑥∗ ⊁ 0 can kill local rates

Indeed, if we assume a positive definite Hessian at 𝑥𝑥∗, then typical 
algorithms enjoy their “normal” fast local convergence rates.

This is what we find in classic optimization textbooks.

The issue is: for 𝑓𝑓 ∈ 𝐶𝐶2, at a critical point 𝑥𝑥∗,

∇2𝑓𝑓 𝑥𝑥∗ ≻ 0 ⇒ 𝑥𝑥∗ is an isolated local minimum.
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But quite often, minima are not isolated

And therefore, there is no way ∇2𝑓𝑓 𝑥𝑥∗ ≻ 0 for such applications.

Overparameterized regression / neural network (e.g., min
𝑥𝑥

𝐹𝐹 𝑥𝑥 − 𝑏𝑏 2)

Redundant parameterization (e.g., 𝐿𝐿,𝑅𝑅 ↦ 𝐿𝐿𝑅𝑅⊤) min
𝑥𝑥

Symmetry (e.g., 𝑓𝑓 𝑥𝑥 invariant to rotation)

Yet, we often still see fast convergence.

Why?   Several answers have emerged.
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Insights from a simple 2-D example

𝑓𝑓 𝑥𝑥,𝑦𝑦 = 𝜇𝜇
2
𝑥𝑥2 ∇𝑓𝑓 𝑥𝑥,𝑦𝑦 = 𝜇𝜇𝜇𝜇

0 ∇2𝑓𝑓 𝑥𝑥,𝑦𝑦 = 𝜇𝜇
0

The set of minimizers is a line 𝒮𝒮 = 0,𝑦𝑦 ∶ 𝑦𝑦 ∈ 𝐑𝐑 , where 𝑓𝑓∗ = 0.
The gradient and Hessian “ignore” the tangent direction.
As a result, typical algorithms only “see” the direction that matters.
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ker∇2𝑓𝑓 0,𝑦𝑦 = 0,𝑢𝑢 ∶ 𝑢𝑢 ∈ 𝐑𝐑
All other eigenvalues = 𝜇𝜇 𝑓𝑓 𝑥𝑥,𝑦𝑦 − 𝑓𝑓∗ =

1
2𝜇𝜇 ∇𝑓𝑓 𝑥𝑥, 𝑦𝑦 2

𝑓𝑓 𝑥𝑥,𝑦𝑦 − 𝑓𝑓∗ =
𝜇𝜇
2 dist 𝑥𝑥,𝑦𝑦 ,𝒮𝒮 2 ∇𝑓𝑓 𝑥𝑥,𝑦𝑦 = 𝜇𝜇 dist 𝑥𝑥,𝑦𝑦 , 𝒮𝒮

𝒮𝒮



To avoid topological curiosities, here 𝒮𝒮 is the set of global minimizers of 𝑓𝑓. The paper treats local minima.

𝒮𝒮

Take 1: Morse–Bott

If the minima are not singletons, maybe they are still “nice” sets.
Say the set of minima 𝒮𝒮 is an embedded submanifold of 𝐑𝐑𝑛𝑛.

Surely, ∇𝑓𝑓 𝑥𝑥 = 0 and ∇2𝑓𝑓 𝑥𝑥 ≽ 0 for 𝑥𝑥 ∈ 𝒮𝒮.
Also, ∇2𝑓𝑓 𝑥𝑥 𝑣𝑣 = 0 if 𝑣𝑣 ∈ T𝑥𝑥𝒮𝒮.

Def.: 𝑓𝑓 is MB if 𝒮𝒮 is smooth and ker∇2𝑓𝑓 𝑥𝑥 = T𝑥𝑥𝒮𝒮.
Can then show good rates for various methods.
We did not find many refs; see e.g. Fehrman, Gess & Jentzen 2020.
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ker∇2𝑓𝑓 0,𝑦𝑦 = 0,𝑢𝑢 ∶ 𝑢𝑢 ∈ 𝐑𝐑
All other eigenvalues = 𝜇𝜇 𝑓𝑓 𝑥𝑥, 𝑦𝑦 − 𝑓𝑓∗ =

1
2𝜇𝜇

∇𝑓𝑓 𝑥𝑥,𝑦𝑦 2

𝑓𝑓 𝑥𝑥, 𝑦𝑦 − 𝑓𝑓∗ =
𝜇𝜇
2

dist 𝑥𝑥,𝑦𝑦 ,𝒮𝒮
2

∇𝑓𝑓 𝑥𝑥,𝑦𝑦 = 𝜇𝜇 dist 𝑥𝑥, 𝑦𝑦 ,𝒮𝒮



Take 2: Polyak–Łojasiewicz

In 1963, Polyak studied 𝑓𝑓 where gradient norm² ~ optimality gap.
This is also called gradient dominance and is a particular case of Kurdyka–Łojasiewicz.

Def.: 𝑓𝑓 is PŁ at 𝑥𝑥∗ if 𝑓𝑓 𝑥𝑥 − 𝑓𝑓 𝑥𝑥∗ ≤ 1
2𝜇𝜇

∇𝑓𝑓 𝑥𝑥 2 for 𝑥𝑥 around 𝑥𝑥∗.

This includes strongly convex functions, and much more.

Linear cvgce for GD, and superlinear cvgce for cubic regularization.
Polyak 1963; Nesterov & Polyak 2006.   Many, many, many recent analyses of algorithms under PŁ. 
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Take 3: Quadratic Growth

We could also assume that 𝑓𝑓 grows fast as we move away from 𝒮𝒮.
Already in Bonnans & Ioffe 1995, but likely much older.

Def.: 𝑓𝑓 has QG at 𝑥𝑥∗ if 𝑓𝑓 𝑥𝑥 − 𝑓𝑓 𝑥𝑥∗ ≥ 𝜇𝜇
2

dist 𝑥𝑥,𝒮𝒮 2 for 𝑥𝑥 around 𝑥𝑥∗.

Interestingly, this one is well defined even if 𝑓𝑓 is nonsmooth.
This has been used to show fast convergence in that setting.
Drusvyatskiy & Lewis 2016; Davis & Jiang 2022; Lewis & Tian 2022.
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Take 4: Error Bound

We could assume the gradient grows fast as we move away from 𝒮𝒮.
This seems to have originated with Luo & Tseng 1993.

Def.: 𝑓𝑓 has EB at 𝑥𝑥∗ if ∇𝑓𝑓 𝑥𝑥 ≥ 𝜇𝜇 dist 𝑥𝑥,𝒮𝒮 for 𝑥𝑥 around 𝑥𝑥∗.

Luo & Tseng showed linear convergence for several methods with EB.

Yue, Zhou & Man-Cho So 2019 showed quadratic cvgce for cubic regularization.
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Some conditions imply others for 𝑓𝑓 ∈ 𝐶𝐶2
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Quadratic
Growth

Error
Bound

Polyak
Łojasiewicz

Morse
Bott

⇒

Transpires in
Bonnans & Ioffe 1995

⇒

Morse–Bott is explicitly strong, partly because it requires a smooth solution set 𝒮𝒮.
With a few simple Taylor expansion arguments, we can see MB ⇒ QG, EB, PŁ.



Some conditions imply others for 𝑓𝑓 ∈ 𝐶𝐶2
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Quadratic
Growth

Error
Bound

Polyak
Łojasiewicz

Morse
Bott

⇒

Transpires in
Bonnans & Ioffe 1995 ⇔ Classic for 𝑓𝑓 ∈ 𝐶𝐶1. E.g.,

Karimi, Nutini & Schmidt 2016

⇒
We didn’t see it stated.

Controls ∇𝑓𝑓 from 𝑓𝑓 if 𝐶𝐶2.

⇒

Feehan 2020 yields part of it for 𝑓𝑓 analytic.
We show it for 𝐶𝐶2. In particular,

PŁ implies smooth 𝒮𝒮!

* Gradient flow argument (𝑓𝑓 ∈ 𝐶𝐶1),
Ekeland’s variational principle

* PŁ ⇒ QG  has a rich history: see Ioffe 2000, Bolte et al. 2017 (arXiv 2015); Drusvyatskiy et al. 2015, Karimi et al. 2016, Zhang 2017.



Actually, all conditions coincide for 𝑓𝑓 ∈ 𝐶𝐶2!
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Quadratic
Growth

Error
Bound

Polyak
Łojasiewicz

Morse
Bott

⇒

𝐶𝐶2 𝐶𝐶1 with some constant,
𝐶𝐶2 with better constant.

⇒
𝐶𝐶2

⇒𝐶𝐶2

𝐶𝐶1 ⇔

[𝑓𝑓 ∈ 𝐶𝐶1 and QG] ⇏ EB, PŁ
𝑓𝑓 𝑥𝑥 = 2𝑥𝑥2 + 𝑥𝑥2 sin 1/ |𝑥𝑥|

[𝑓𝑓 ∈ 𝐶𝐶1 and PŁ] ⇏ smooth 𝒮𝒮

𝑓𝑓 𝑥𝑥,𝑦𝑦 =
𝑥𝑥2𝑦𝑦2

𝑥𝑥2 + 𝑦𝑦2



Technical details of note

PŁ, QG and EB hold in a neighborhood. It may shrink along “⇒”.

If one holds with 𝜇𝜇, all hold for all 𝜇𝜇′ < 𝜇𝜇 (trade-off with ngbhd).

For 𝑓𝑓 ∈ 𝐶𝐶𝑘𝑘 with 𝑘𝑘 ≥ 2, we have PŁ ⇒ MB with 𝒮𝒮 of class 𝐶𝐶𝑘𝑘−1.
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ker∇2𝑓𝑓 𝑥𝑥 = T𝑥𝑥𝒮𝒮
All other eigenvalues ≥ 𝜇𝜇 𝑓𝑓 𝑥𝑥 − 𝑓𝑓∗ ≤

1
2𝜇𝜇

∇𝑓𝑓 𝑥𝑥 2

𝑓𝑓 𝑥𝑥 − 𝑓𝑓∗ ≥
𝜇𝜇
2

dist 𝑥𝑥,𝒮𝒮 2 ∇𝑓𝑓 𝑥𝑥 ≥ 𝜇𝜇 dist 𝑥𝑥,𝒮𝒮



PŁ ⇒ MB: Elements of proof
The most interesting bit is to show:   PŁ ⇒ 𝒮𝒮 smooth

Pick 𝑥̅𝑥 ∈ 𝒮𝒮. Let 𝑃𝑃 𝑥̅𝑥 be the projector to the image of ∇2𝑓𝑓 𝑥̅𝑥 , and:

𝒵𝒵 = 𝑥𝑥 close to 𝑥̅𝑥 ∶ 𝑃𝑃 𝑥̅𝑥 ∇𝑓𝑓 𝑥𝑥 = 0

Clearly, 𝒵𝒵 contains 𝒮𝒮 (locally).
Also, 𝒵𝒵 is a smooth submanifold: study rank of 𝑃𝑃 𝑥̅𝑥 ∇2𝑓𝑓 𝑥𝑥 .
And we can show that PŁ implies 𝒵𝒵 = 𝑆𝑆 (locally).
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𝒮𝒮

Take away for non-isolated minima

If 𝑓𝑓 is 𝐶𝐶2, those four conditions are equivalent.
Thus, assuming one of MB, PŁ, QG or EB, we can use all.
This helps analysis. In our paper: cubic regularization, trust regions.

E.g.: Nesterov & Polyak ’06 compared to Yue et al. ‘19 for cubic regularization.
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