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This talk is about fast local convergence

min f(x)

x€ERMN

We use algorithms to compute x € R™ such that f(x) € R is small.

Ideally, we want a global minimum, but that’s hard. Local will do.

Say f is C? (continuous Hessian). Focus on



A simple look at the one-dimensional case
Say f(x) = x*. Minimizeris x* = 0.
Then Vf(x) = 4x3 and V4f (x) = 12x2.

Gradient descent: x4 1 = x; — aVf (xg) = (1 — 4axf)xy.

Newton’'s method: xj,.1 = xx — V2 (x,) " H[VSf (x)] = gxk.



The culprit: V2 f(x*) # 0 can kill local rates

Indeed, if we assume a positive definite Hessian at x”, then typical
algorithms enjoy their “normal” fast local convergence rates.

This is what we find in classic optimization textbooks.
The issue is: for f € C#, at a critical point x*,

Vif(x*) >0 = x*isanisolated local minimum.



But quite often, minima are not isolated

And therefore, there is no way V?f(x*) > 0 for such applications.

Overparameterized regression / neural network (e.g., min||F (x) — b||%)
X
Redundant parameterization (e.g., (L,R) » LRT)

Symmetry (e.g., f(x) invariant to rotation)

Yet, we often still see fast convergence.

Why?



[nsights from a simple 2-D example &

fay) =42 vy =[y] Prey =|*

The set of minimizersisaline§ = {(0,y) : y € R}, where f* =
The gradient and Hessian “ignore” the tangent direction.

As a result, typical algorithms only “see” the direction that matters.

ker V2£(0,y) = {(0,u) : u € R} 1 ,
All other eigenvalues = feoy) = f"= 2 1VF G, Y

fOoy) = f* =5 dist((x,3),5)’ 19 Ge, )l = i dist(Cx, ), 5)




ker V2f(0,y) = {(0,u) : u € R}
All other eigenvalues = 1/

1
feen = =5 IVf G P12

feoy) - =5dist(@y),8)" VGl = 1 dist(( ), S)

Take 1: Morse-Bott

[f the minima are not singletons, maybe they are still “nice” sets.
Say the set of minima § is an embedded submanifold of R".

Surely, Vf(x) = 0and V4f(x) > O forx € S.
Also, V2 f(x)[v] = 0ifv € T,S.

Def.: f is MB if § is smooth and ker V4f (x) = T,S.
Can then show good rates for various methods.

We did not find many refs; see e.g. Fehrman, Gess & Jentzen 2020.

To avoid topological curiosities, here S is the set of global minimizers of f. The paper treats local minima.



ker V2£(0,y) = {(0,u) : u € R}
All other eigenvalues =

1
fGay) = = - IV CeyIP

ooy = £ =Zdist((63),8)" VGl = 4 dist(C6, 1), 5)

Take 2: Polyak-t.ojasiewicz

In 1963, Polyak studied f where gradient norm* ~ optimality gap.

This is also called and is a particular case of

Def.: fisPLatx™if f(x) — f(x*) < i IVf(x)]|* for x around x*.

This includes strongly convex functions, and much more.

Linear cvgce for GD, and superlinear cvgce for cubic regularization.
Polyak 1963; Nesterov & Polyak 2006. Many, many, many recent analyses of algorithms under Pt.



ker V2£(0,y) = {(0,u) : u € R}
All other eigenvalues =

1
Gy = = - IV G yIP

foy) = £ =3dist((63),8)" VGl =k dist(C6, ), 5)

Take 3: Quadratic Growth

We could also assume that f grows fast as we move away from §.
Already in Bonnans & Ioffe 1995, but likely much older.

Def.: fhas OGatx™if f(x) — f(x™) = %dist(x, S)? for x around x*.

Interestingly, this one is well defined even if f is nonsmooth.

This has been used to show fast convergence in that setting.
Drusvyatskiy & Lewis 2016; Davis & Jiang 2022; Lewis & Tian 2022.



ker V2£(0,y) = {(0,u) : u € R}
All other eigenvalues =

1
Gy = = - IV G yIP

Take 4 . E rro r B O un d fey)—f = Edist((X,}’),S)z IVFCe, Il = 1 dist((x, ), S)

We could assume the gradient grows fast as we move away from §.
This seems to have originated with Luo & Tseng 1993.

Def.: f has EB at x™ if [|Vf (x)|| = u dist(x, S) for x around x™.
Luo & Tseng showed linear convergence for several methods with EB.

Yue, Zhou & Man-Cho So 2019 showed quadratic cvgce for cubic regularization.



Some conditions imply others for f € C*

Morse : Polyak
Bott L.ojasiewicz

Transpires in §
Bonnans & Ioffe 1995

Quadratic Error
Growth Bound

, partly because it requires a smooth solution set S.
With a few simple , we can see MB = QG, EB, PtL.



Some conditions imply others for f € C*

Feehan 2020 yields part of it for f analytic.
We show it for C?. In particular,
Pt implies smooth §!

Morse c Polyak
Bott L.ojasiewicz
Transpires in Classic for f € C1.E.g,,
Bonnans & Ioffe 1995 & Karimi, Nutini & Schmidt 2016

* Gradient flow argument (f € C1),
Ekeland’s variational principle

Quadratic : Error

Growth Bound
We didn’t see it stated.

Controls Vf from f if C2.

* PL. = QG has arich history: see loffe 2000, Bolte et al. 2017 (arXiv 2015); Drusvyatskiy et al. 2015, Karimi et al. 2016, Zhang 2017.



for f € C*!

/[f € C* and PL] # smooth S
2.2

Actually, all conditions

x%y
fx,y) = m
CZ
Morse c Polyak
Bott L.ojasiewicz
2 C! with some constant,
& ) C? with better constant.
C
Quadratic : Error
Growth ) Bound
C

|~ [f € C* and QG] # EB, PL
f(x) = 2x% + x%sin(1/4/|x])
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Technical details of note

kerV2f(x) = T,S
All other eigenvalues >

1
fG) = £+ < = IVF I

fx)—f*= Edist(x, S)? IVFCO) | = i dist(x, S)

Pt, QG and EB hold in a neighborhood. It may shrink along “=".
[f one holds with 1, all hold for all (trade-off with ngbhd).

For f € C* with k > 2, we have PL. = MB with S of class C*™ 1.



Pt. = MB: Elements of proof
The most interesting bit is to show: PL = § smooth

Pick X € S. Let P(X) be the projector to the image of V4 f (), and:

Z ={xclosetox : P(x)Vf(x) = 0}

Clearly, Z contains § (locally).
Also, Z is a smooth submanifold: study rank of P(x)V?f (x).

And we can show that Pt. implies Z = S (locally).



arXiv:2303.00096

Take away for non-isolated minima

kerV2f(x) = T,S
All other eigenvalues >

1
f@) = f* <~ IVf I

fx)—f*= Eclist(x, S)? IVF(x)|| = i dist(x, S)

If f is C#, those four conditions are equivalent.
Thus, assuming one of MB, Pt, QG or EB, we can use all.

This helps analysis. In our paper: ,

E.g.: Nesterov & Polyak '06 compared to Yue et al. ‘19 for cubic regularization.
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