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Burer-Monteiro factorization
– We consider SDPs of the form:

min
X∈Sn×n

〈C,X〉 s.t. A(X) = b, X � 0. (SDP)

– Solvable in poly time but enforcing PSD constraint can be expensive.

– Burer-Monteiro factorization: Set X = Y Y ∗ and (SDP) becomes

min
Y ∈Kn×k

〈C, Y Y ∗〉 s.t. A(Y Y ∗) = b. (P)

Advantages:

– PSD constraint naturally enforced.

– Moreover, if SDP is compact, it always has a solution of rank r with
dim Sr×r ≤ m (# constraints): can reduce dimension to k ∼

√
m.

Issues:

– The problem becomes non-convex.

– Besides, algorithms can only guarantee approximate second-order opti-
mality conditions in a finite number of iterations: they return ASOSPs.

Smoothness assumption

– Search space of (P): Mk = {Y ∈ Kn×k : A(Y Y ∗) = b}.
– The set Mn is a smooth manifold (implies Mk is smooth for k ≤ n).

Setting

Main Results
Main Result: With high probability, approximate second-order station-
ary points (ASOSPs) for a randomly perturbed objective function are
approximate global optima.
Approach: Smoothed analysis.
Motivating applications: Phase retrieval, angular synchronization,
max-cut, synchronization of rotations (SLAM, 3D registration), trust-
region subproblem

Related work

– Burer and Monteiro [4] showed that if Y is a rank-deficient local opti-
mum, then X = Y Y ∗ is a global optimum.

– Under the same setting as us, Boumal et al. [3] showed that for al-
most all cost matrices, all second-order stationary points (SOSPs) are
optimal.

– For a broader class of SDPs, without enforcing exact constraint satisfac-
tion, Bhojanapalli et al. [1] showed that, under random perturbations,
ASOSPs are approximately optimal.

Overview

Assumptions
– The search space of (SDP) is compact.

– The search space of (P) is a manifold.

Main theorem

– If we randomly perturb the cost matrix C, with k = Ω̃(
√
m)

– Then, w.h.p. on the perturbation, if Y ∈ Kn×k is an ASOSP for (P),

–X = Y Y ∗ is an approximate global optimum.

Benign non-convexity in Burer-Monteiro factorization

Probabilistic argument
Perturbing the cost matrix in (P) with a Gaussian Wigner matrix ⇒
w.h.p., any approximate first-order stationary point Y of the perturbed
(P) is almost column-rank deficient.

Deterministic argument

If Y ASOSP for (P) and almost column-rank deficient, then X = Y Y ∗

is an approximate global optimum for (SDP).

Proof sketch

Problem setting

Goal: Retrieve a signal z ∈ Cn from b = |Az| ∈ Rm
+ .

min
u∈Cm

u∗Cu s.t. |ui| = 1, (PR)

with C = diag(b)(I − AA†)diag(b).
Dropping the rank constraint, relaxes the problem to the following SDP:

min
X∈Hm×m

〈C,X〉 s.t. diag(X) = 1,

X � 0.
(PhaseCut)

Burer-Monteiro factorization

Each yi is a point on the unit
sphere in Ck.

min
Y ∈Cm×k

〈CY, Y 〉 s.t. y∗i yi = 1, ∀i,

with Y = [y∗1, . . . , y
∗
m] and yi ∈ Ck.

– The main theorem applies

– Related work: Mei et al. [5].

o Holds for ASOSPs without per-
turbation.

o More general result since it holds
for any k.

o But when k = Ω̃(
√
m), does not

capture optimality as we do here.

Numerical Experiments
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Computation time of a dedicated interior-point method (IPM) and of the
Burer-Monteiro approach (BM) using Manopt [2] to solve (PhaseCut).
As the number of measurements increases, BM outperforms IPM.

Example: Phase retrieval
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