[teration complexity of optimization on smooth manifolds

Nicolas Boumal (Princeton University), joint work with P.-A. Absil (UCLouvain), Naman Agarwal (Google), Brian Bullins (Princeton), Coralia Cartis (Oxford)

Mostly harmless

Optimization on smooth manifolds is not that different from
unconstrained optimization on a linear space:
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Tangent spaces: allowed directions . . h
Eg:T,M = {S ER": vTs = 0} - (S)

Familiar looking bounds

For any x, € M, worst-case iteration complexity:

Riemannian gradient descent
0(e72) for ||gradf (x)|| < ¢

Riemannian trust regions
0(e72) for ||gradf (x)|| < &

Main assumptions

Mostly the same as in linear spaces:
» f lower-bounded on M

= Sufficient decrease per iteration, either in the actual
cost function (RGD) or in the model (RTR, ARC)

= Regularity assumptions for f; this is key!
Standard assumptions would be, e.g., Lipschitz gradient.
However, this is uncomfortable on manifolds:

dist(grad f(x),gradf (y)) < Ldist(x, y)

Retractions: tools to move around
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X+Ss = 1z | : > — _
E.g.: Retr,(s) = T == 0(8 ) for Amin (Hessf (x)) = —& too Far easier to compare only scalars:
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Riemannian metric: gradient, Hessian <~ Riemannian adaptive regularization with cubics | | | |
E.g: (51,5,), = S;F s, | RSB Same thing for Lipschitz Hessian: go up one order.

AT 7)) ::! j: -..:: 0 ( e~ 1. 5) for small ora dient ( 0 ptim al)
___ 0(8_3) for second-order too

Algorithms we know and love

Xk+1 = Retrxk (Sk)
Riemannian gradient descent, trust-regions and cubic regularization:
" S = —ay grad f(x)

* s~ _argmin  f(x) + (s, grad f(x)) + 3 (s, Hess £ (x)ls])
SETkaV[,HSllSAk

When things are different

To get optimal rates for ARC, we need more work.
Pullback: f, = f o Retr, : T,M — R

Solving the subproblem, we make gradf, (s) small.

RGD and RTR: arXiv:1605.08101, IMA JNA 2019
ARC: arXiv:1806.00065 (see also Zhang & Zhang, arXiv:1805.05565)

For complexity bound, we need gradf (Retr,.(s)) small.

Proof for gradient descent

= 5, ~ argmin f(x;,) + (s, grad f(x;)) + %(S, Hess f () [s]) + = lIslI® On linear spaces, they are the same (Retr,(s) = x + s).

SET,, M Al f(x) = fiow forallx e M
A2 f(Retr,(s)) — f(x) — (s, gradf () < = ||s]|?

On manifolds,

gradf,(s) = (DRetrx(S))adj |lgradf (Retr,(s))]
Need to control minimum singular value; two tools:

Manifolds that matter

Any Cartesians products of all of these:

1
Algorithm: x,.; = Retr,, | ——gradf (x
" o ‘ (  Bradf( k)) Jacobi field comparison theorem (Lee 1997):

Theorem 11.2. (Jacobi Field Comparison Theorem) Suppose (M, g)
1s a Riemannian manifold with all sectional curvatures bounded above by a

constant C'. If v is a unit speed geodesic in M, and J is any normal Jacobi
field along ~v such that J(0) = 0, then

= Unit norm vectors (spheres) Complexity: |[gradf (xg)|| < e with K < 2L(f (xg) — flow)gi2

= Matrices with orthonormal columns (Stiefel manifold)

= Subspaces of R™ of dimension k (Grassmann manifold) , 1 (| DyJ(0)] for 0 < t, if C' = 0;
= Fixed-rank matrices (general, symmetric, psd...) A2 = f(x, 1) — flx) + T lgradf ()| < o7 lgradf (x;)||° T8 > < Rsin% DJ(0)  for0<t<mR,  ifC— % > 0:
"= Low-rank tensors (Tucker, tensor train) 1 \ Rsinh% D,J(0)]  for0<t if C = —% < 0.
2
= Euclidean distance matrices = f(x) — fQ1) = 5 llgradf (x) || . ,
2L Maximum theorem (Bergé 1963):
= Rotation matrices
Y Theorem 2. If ¢ is an upper semi-continuous numerical function in Xx Y

= Positive probability distributions and I' is a u.s.c. mapping of X into Y such that, for each x, I'x # O, the

numerical function M defined by -
| M(x) = max {§(x, ) [ y € T'x}

- IS upper semi-continuous.

K
A1 f() = fiow = ) fO0) = fCr) > = (K + 1)
k=0

= Positive definite matrices

» Many quotients by group actions
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