Iteration complexity of optimization on smooth manifolds

Nicolas Boumal (Princeton University), joint work with P.-A. Absil (UCLouvain), Naman Agarwal (Google), Brian Bullins (Princeton), Coralia Cartis (Oxford)

Mostly harmless

Optimization on smooth manifolds is not that different from unconstrained optimization on a linear space:

Tangent spaces: allowed directions E.g.: $T_x \mathcal{M} = \{ s \in \mathbf{R}^n : x^T s = 0 \}$

Retractions: tools to move around E.g.: Retr_x(s) = $\frac{x+s}{\|x+s\|}$

Riemannian metric: gradient, Hessian E.g.: $\langle s_1, s_2 \rangle_x = s_1^T s_2$

These ideas have been around since the 70s (Luenberger, Gabay)

Algorithms we know and love

 $x_{k+1} = \operatorname{Retr}_{x_k}(s_k)$

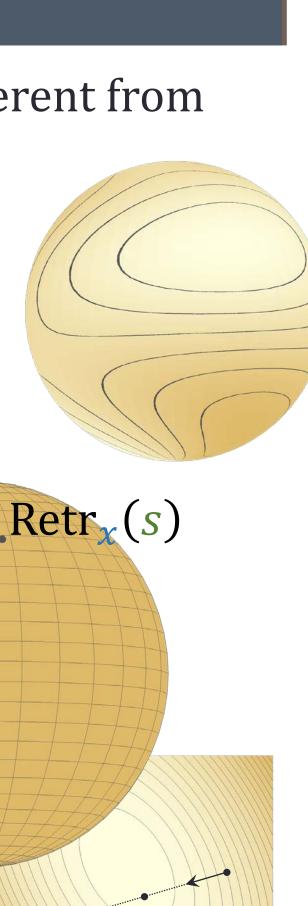
Riemannian gradient descent, trust-regions and cubic regularization:

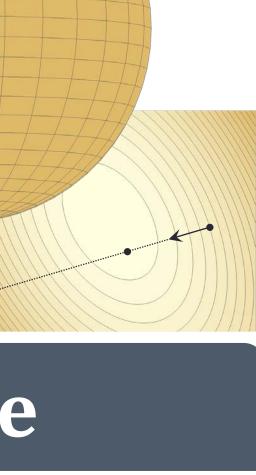
- $s_k = -\alpha_k \operatorname{grad} f(x_k)$
- $s_k \approx \underset{s \in T_{x_k} \mathcal{M}, \|s\| \le \Delta_k}{\operatorname{argmin}} f(x_k) + \langle s, \operatorname{grad} f(x_k) \rangle + \frac{1}{2} \langle s, \operatorname{Hess} f(x_k)[s] \rangle$
- $s_k \approx \underset{s \in T_{x_k}\mathcal{M}}{\operatorname{argmin}} f(x_k) + \langle s, \operatorname{grad} f(x_k) \rangle + \frac{1}{2} \langle s, \operatorname{Hess} f(x_k)[s] \rangle + \frac{\sigma_k}{3} ||s||^3$

Manifolds that matter

Any Cartesians products of all of these:

- Unit norm vectors (spheres)
- Matrices with orthonormal columns (Stiefel manifold)
- Subspaces of Rⁿ of dimension k (Grassmann manifold)
- Fixed-rank matrices (general, symmetric, psd...)
- Low-rank tensors (Tucker, tensor train)
- Euclidean distance matrices
- Rotation matrices
- Positive probability distributions
- Positive definite matrices
- Many quotients by group actions
- • • •





Familiar looking bounds

For any $x_0 \in \mathcal{M}$, worst-case iteration complexity:

Riemannian gradient descent $O(\varepsilon^{-2})$ for $\|\operatorname{grad} f(x)\| \leq \varepsilon$

Riemannian trust regions

 $O(\varepsilon^{-2})$ for $\|\operatorname{grad} f(x)\| \le \varepsilon$ $O(\varepsilon^{-3})$ for $\lambda_{\min}(\text{Hess}f(x)) \ge -\varepsilon$ too

Riemannian adaptive regularization with cubics $O(\varepsilon^{-1.5})$ for small gradient (optimal) $O(\varepsilon^{-3})$ for second-order too

RGD and RTR: arXiv:1605.08101, IMA JNA 2019 ARC: arXiv:1806.00065 (see also Zhang & Zhang, arXiv:1805.05565)

Proof for gradient descent

A1 $f(x) \ge f_{\text{low}}$ for all $x \in \mathcal{M}$ A2 $f(\operatorname{Retr}_{x}(s)) - f(x) - \langle s, \operatorname{grad} f(x) \rangle \leq \frac{L}{2} ||s||^{2}$

Algorithm: $x_{k+1} = \operatorname{Retr}_{x_k} \left(-\frac{1}{T} \operatorname{grad} f \right)$

Complexity: $\|\operatorname{grad} f(x_K)\| \leq \varepsilon$ with $K \leq 2L(f(x_0) - f_{\operatorname{low}}) \frac{1}{c^2}$

 $\mathbf{A2} \Rightarrow f(\mathbf{x}_{k+1}) - f(\mathbf{x}_k) + \frac{1}{L} \|\operatorname{grad} f(\mathbf{x}_k)\|^2 \le \frac{1}{2L} \|\operatorname{grad} f(\mathbf{x}_k)\|^2$ $\Rightarrow f(\mathbf{x}_k) - f(\mathbf{x}_{k+1}) \ge \frac{1}{2L} \|\operatorname{grad} f(\mathbf{x}_k)\|^2$

$$\mathbf{A1} \Rightarrow f(x_0) - f_{\text{low}} \ge \sum_{k=0}^{K} f(x_k) - f(x_{k+1}) > \frac{\varepsilon^2}{2L} (K+1)$$

$$(x_k)$$

Main assumptions

Mostly the same as in linear spaces: • f lower-bounded on \mathcal{M} Sufficient decrease per iteration, either in the actual

 $dist(grad f(x), grad f(y)) \le Ldist(x, y)$

Far easier to compare only scalars:

Same thing for Lipschitz Hessian: go up one order.

When things are different

Pullback: $\hat{f}_x = f \circ \operatorname{Retr}_x : \operatorname{T}_x \mathcal{M} \to \mathbf{R}$ On manifolds,

Jacobi field comparison theorem (Lee 1997):

field along γ such that J(0) = 0, then

$$|J(t)| \ge \begin{cases} t |D_t J(0)| \\ R \sin \frac{t}{R} |D_t J(0)| \\ R \sinh \frac{t}{R} |D_t J(0)| \end{cases}$$

Maximum theorem (Bergé 1963):

Theorem 2. If ϕ is an upper semi-continuous numerical function in $X \times Y$ and Γ is a u.s.c. mapping of X into Y such that, for each x, $\Gamma x \neq \emptyset$, the numerical function M defined by

is upper semi-continuous.

cost function (RGD) or in the model (RTR, ARC) Regularity assumptions for *f*; this is key!

Standard assumptions would be, e.g., Lipschitz gradient. However, this is uncomfortable on manifolds:

 $f(\operatorname{Retr}_{x}(s)) \leq f(x) + \langle s, \operatorname{grad} f(x) \rangle + \frac{L}{2} ||s||^{2}$

To get optimal rates for ARC, we need more work.

Solving the subproblem, we make grad $\hat{f}_{x}(s)$ small.

For complexity bound, we need grad $f(\operatorname{Retr}_{x}(s))$ small.

On linear spaces, they are the same (Retr_x(s) = x + s).

 $\operatorname{grad} \hat{f}_x(s) = \left(\operatorname{DRetr}_x(s) \right)^{\operatorname{adj}} \left[\operatorname{grad} f(\operatorname{Retr}_x(s)) \right]$ Need to control minimum singular value; two tools:

Theorem 11.2. (Jacobi Field Comparison Theorem) Suppose (M, g)is a Riemannian manifold with all sectional curvatures bounded above by a constant C. If γ is a unit speed geodesic in M, and J is any normal Jacobi

if C = 0; for $0 \leq t$, if $C = \frac{\mathbf{I}}{R^2} > 0;$ for $0 \le t \le \pi R$, $if C = -\frac{\mathbf{1}}{R^2} < 0.$ for $0 \leq t$,

