
        
       

  
    

   
      

       
    

 

      
    

      
 
        

     
       

  

      
      

    
      

   

A1 𝑓𝑓 𝑥𝑥 ≥ 𝑓𝑓low for all 𝑥𝑥 ∈ ℳ

A2 𝑓𝑓 Retr𝑥𝑥 𝑠𝑠 − 𝑓𝑓 𝑥𝑥 − 𝑠𝑠, grad𝑓𝑓 𝑥𝑥 ≤ 𝐿𝐿
2
𝑠𝑠 2

Algorithm: 𝑥𝑥𝑘𝑘+1 = Retr𝑥𝑥𝑘𝑘 − 1
𝐿𝐿

grad𝑓𝑓(𝑥𝑥𝑘𝑘)

Complexity: grad𝑓𝑓(𝑥𝑥𝐾𝐾) ≤ 𝜀𝜀 with 𝐾𝐾 ≤ 2𝐿𝐿 𝑓𝑓 𝑥𝑥0 − 𝑓𝑓low
1
𝜀𝜀2

A2 ⇒ 𝑓𝑓 𝑥𝑥𝑘𝑘+1 − 𝑓𝑓 𝑥𝑥𝑘𝑘 +
1
𝐿𝐿

grad𝑓𝑓 𝑥𝑥𝑘𝑘 2 ≤
1
2𝐿𝐿

grad𝑓𝑓(𝑥𝑥𝑘𝑘) 2

⇒ 𝑓𝑓 𝑥𝑥𝑘𝑘 − 𝑓𝑓 𝑥𝑥𝑘𝑘+1 ≥
1
2𝐿𝐿

grad𝑓𝑓 𝑥𝑥𝑘𝑘 2

𝐀𝐀𝐀𝐀 ⇒ 𝑓𝑓 𝑥𝑥0 − 𝑓𝑓low ≥�
𝑘𝑘=0

𝐾𝐾

𝑓𝑓 𝑥𝑥𝑘𝑘 − 𝑓𝑓 𝑥𝑥𝑘𝑘+1 >
𝜀𝜀2

2𝐿𝐿
𝐾𝐾 + 1

Iteration complexity of optimization on smooth manifolds
Nicolas Boumal (Princeton University), joint work with P.-A. Absil (UCLouvain), Naman Agarwal (Google), Brian Bullins (Princeton), Coralia Cartis (Oxford)

Algorithms we know and love
To get optimal rates for ARC, we need more work.
Pullback: 𝑓𝑓𝑥𝑥 = 𝑓𝑓 ∘ Retr𝑥𝑥 ∶ Txℳ → 𝐑𝐑
Solving the subproblem, we make grad𝑓𝑓𝑥𝑥 𝑠𝑠 small.
For complexity bound, we need grad𝑓𝑓 Retr𝑥𝑥(𝑠𝑠) small.
On linear spaces, they are the same (Retr𝑥𝑥 𝑠𝑠 = 𝑥𝑥 + 𝑠𝑠).
On manifolds,

grad𝑓𝑓𝑥𝑥 𝑠𝑠 = DRetr𝑥𝑥 𝑠𝑠 adj grad𝑓𝑓 Retr𝑥𝑥(𝑠𝑠)
Need to control minimum singular value; two tools:
Jacobi field comparison theorem (Lee 1997):

Maximum theorem (Bergé 1963):

Familiar looking bounds

Proof for gradient descent

Main assumptions
Mostly the same as in linear spaces:
 𝑓𝑓 lower-bounded on ℳ
 Sufficient decrease per iteration, either in the actual 

cost function (RGD) or in the model (RTR, ARC)
 Regularity assumptions for 𝑓𝑓; this is key!

Standard assumptions would be, e.g., Lipschitz gradient.
However, this is uncomfortable on manifolds:

dist grad𝑓𝑓 𝑥𝑥 , grad𝑓𝑓 𝑦𝑦 ≤ 𝐿𝐿dist 𝑥𝑥,𝑦𝑦
0
0

Far easier to compare only scalars:

𝑓𝑓 Retr𝑥𝑥 𝑠𝑠 ≤ 𝑓𝑓 𝑥𝑥 + 𝑠𝑠, grad𝑓𝑓 𝑥𝑥 +
𝐿𝐿
2

𝑠𝑠 2

Same thing for Lipschitz Hessian: go up one order.

BURER–MONTEIRO FOR SDP’S

When things are different

Optimization on smooth manifolds is not that different from 
unconstrained optimization on a linear space:

min
𝑥𝑥
𝑓𝑓 𝑥𝑥 subject to 𝑥𝑥 ∈ ℳ

Tangent spaces: allowed directions
E.g.: T𝑥𝑥ℳ = 𝑠𝑠 ∈ 𝐑𝐑𝑛𝑛 ∶ 𝑥𝑥T𝑠𝑠 = 0

Retractions: tools to move around
E.g.: Retr𝑥𝑥 𝑠𝑠 = 𝑥𝑥+𝑠𝑠

𝑥𝑥+𝑠𝑠

Riemannian metric: gradient, Hessian
E.g.: 𝑠𝑠1, 𝑠𝑠2 𝑥𝑥 = 𝑠𝑠1T𝑠𝑠2

Mostly harmless

Manifolds that matter
Any Cartesians products of all of these:
 Unit norm vectors (spheres)
 Matrices with orthonormal columns (Stiefel manifold)
 Subspaces of 𝐑𝐑𝑛𝑛 of dimension 𝑘𝑘 (Grassmann manifold)
 Fixed-rank matrices (general, symmetric, psd…)
 Low-rank tensors (Tucker, tensor train)
 Euclidean distance matrices
 Rotation matrices
 Positive probability distributions
 Positive definite matrices
 Many quotients by group actions
 …

𝑥𝑥𝑘𝑘+1 = Retr𝑥𝑥𝑘𝑘 𝑠𝑠𝑘𝑘
Riemannian gradient descent, trust-regions and cubic regularization:
 𝑠𝑠𝑘𝑘 = −𝛼𝛼𝑘𝑘 grad 𝑓𝑓(𝑥𝑥𝑘𝑘)

 𝑠𝑠𝑘𝑘 ≈ argmin
𝑠𝑠∈T𝑥𝑥𝑘𝑘ℳ, 𝑠𝑠 ≤Δ𝑘𝑘

𝑓𝑓 𝑥𝑥𝑘𝑘 + 𝑠𝑠, grad 𝑓𝑓 𝑥𝑥𝑘𝑘 + 1
2
𝑠𝑠, Hess 𝑓𝑓 𝑥𝑥𝑘𝑘 𝑠𝑠

 𝑠𝑠𝑘𝑘 ≈ argmin
𝑠𝑠∈T𝑥𝑥𝑘𝑘ℳ

𝑓𝑓 𝑥𝑥𝑘𝑘 + 𝑠𝑠, grad 𝑓𝑓 𝑥𝑥𝑘𝑘 + 1
2
𝑠𝑠, Hess 𝑓𝑓 𝑥𝑥𝑘𝑘 𝑠𝑠 + 𝜎𝜎𝑘𝑘

3
𝑠𝑠 3

These ideas have been around since the 70s (Luenberger, Gabay)

𝑥𝑥

Retr𝑥𝑥 𝑠𝑠
𝑠𝑠

For any 𝑥𝑥0 ∈ ℳ, worst-case iteration complexity:

Riemannian gradient descent
𝑂𝑂 𝜀𝜀−2 for grad𝑓𝑓(𝑥𝑥) ≤ 𝜀𝜀

Riemannian trust regions
𝑂𝑂 𝜀𝜀−2 for grad𝑓𝑓(𝑥𝑥) ≤ 𝜀𝜀
𝑂𝑂 𝜀𝜀−3 for 𝜆𝜆min Hess𝑓𝑓(𝑥𝑥) ≥ −𝜀𝜀 too

Riemannian adaptive regularization with cubics
𝑂𝑂 𝜀𝜀−1.5 for small gradient (optimal)
𝑂𝑂 𝜀𝜀−3 for second-order too

RGD and RTR: arXiv:1605.08101, IMA JNA 2019
ARC: arXiv:1806.00065 (see also Zhang & Zhang, arXiv:1805.05565)

𝑥𝑥

𝑠𝑠

𝑠𝑠 + 𝑠̇𝑠
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