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Optimization on manifolds

min f (x)




Taking a close look at



























Gifts from the smooth & Riemannian structure
min f(x
m Mf (x)

: allowed directions
Eg:T,M ={s € R": xTs = 0}

S

= | _ Retrx(s)

: tools to move around |
X+S '

E.g.: Retr, (s) =

l|2c+s|| *

[nner products: , =

E.g.:(s1,52)x = SlTSZ

These ideas have been around since the 70s (Luenberger, Gabay)



: . N
A1l F(x) > fio., forall x € R” Gradient descentin R

A2 Vfis L-Lipschitz: [|[Vf(y) =V ()| < L|ly — x|

Algorithm: = x — = Vf (%)

Complexity: ||Vf (xg)|| < € for some K < 2L(f (xg) — flow)gi2

How do we generalize A2 to manifolds?

- A proper Lipschitz definition is inconvenient:

dist(grad f(y),gradf (x)) < L -dist(x, y)

- Opportunistic approach: extract what we need from the proof.



AL F(x)> foo forallx € R Gradient descent in R"

A2 Vfis L-Lipschitz: [|[Vf(y) = VOl < L|ly — x||
Algorithm: = X} — % Vf(x,)

Complexity: |[|Vf (xg)|| < € forsome K < 2L(f(xy) — fiow) giz

L
A2 = |f(v) —f(x) = (v —x, Vf(x)) Sz” — x|
1 1
= f( ) — f(x,) + Z(Vf(xk): Vf(x,)) < o7 N4AEMIIR
1
= f(x,) — f( )2ﬂ||\7f(xk)||2

2

& &
A1 f(x) =~ fiow = ) f(0) = (o) > (K+ 1)
k=0



Gradient descent on M
Al f(x) = fiow forallx e M

A2 f(Retr,(s)) — f(x) — (s, gradf (x)) < |52 / R

Algorithm: = Retr,, (— %grad f (xk))

Complexity: ||gradf (xg)|| < € with K < 2L(f (%) — fiow) Siz

1 1
A2 = (1) — flg) + T lgradf (x;)1* < T lgradf ()l

1
= flx) — f( ) = 57 lgradf (x;)1*

2

K
A1 f(x) — fiow = ) f(0) = FCoi) > (K+ 1)
k=0



A2 f(Retr,(s)) — f(x) — (s, gradf (x)) < |Is]I?

== Retr,. (s)
Assumption on both f and Retr. / |

X

Satisfied in particular:

1. If M € R"is compact and VVf is locally
Lipschitz in R™.

2. If M is compact and Retr is “nice”.

Ongoing research.



Beyond gradient descent on manifolds

Trust regions
arXiv:1605.08101

0(&72) for small gradient
0(8_3) for second-order too

Adaptive regularization with cubics (ARC)
arXiv:1806.00065

0(&™15) for small gradient
0(8_3) for second-order too

See also Zhang & Zhang’'s work on cubics: arXiv:1805.05565 .



An excellent book

Optimization algorithms on
matrix manifolds

A Matlab toolbox

www.manopt.org {

Manopt #& Home | A Tutorial & Forum A About ™ Contact

Welcome to Manopt!

A Matlab toolbox for optimization on manifolds

Optimization on manifolds is a powerful paradigm to address nonlinear optimization problems.

various types of constraints that arise naturally in applications, such as orthonormality or low ra
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