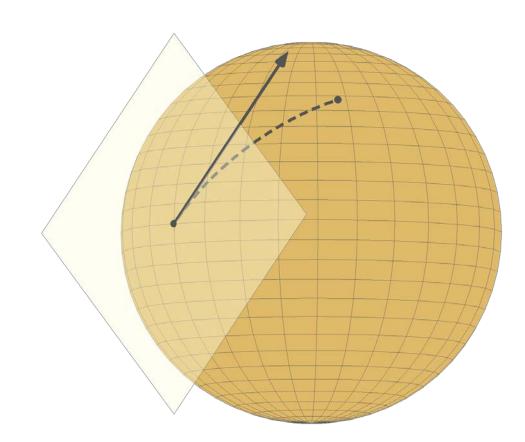
Worst-case complexity bounds for optimization on manifolds

Nicolas Boumal Princeton University

with Naman Agarwal, Brian Bullins, Coralia Cartis and Pierre-Antoine Absil

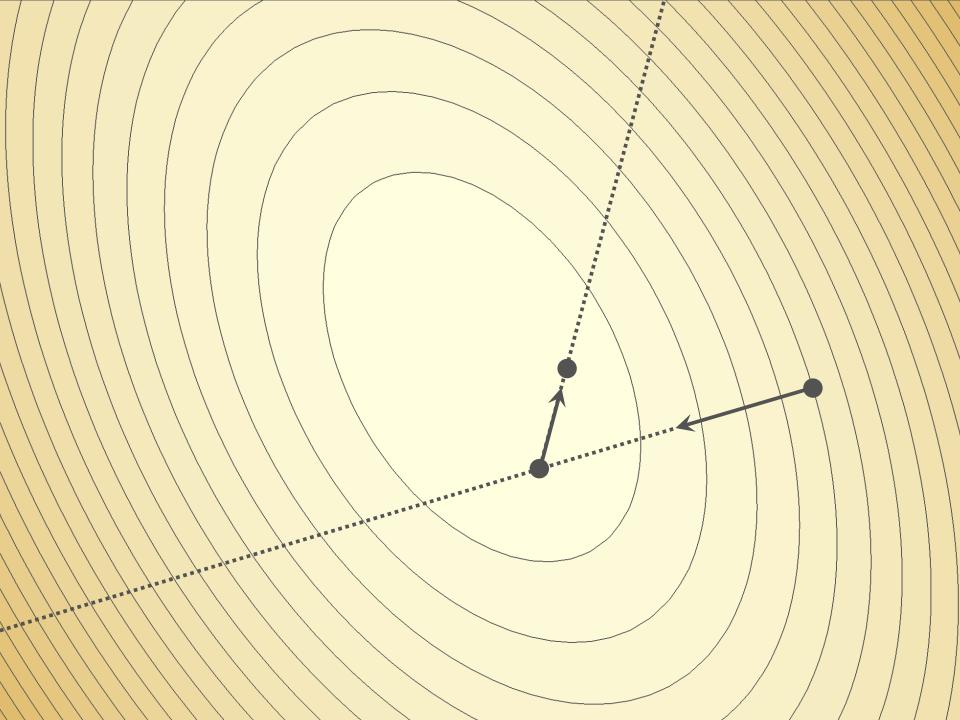
Optimization on manifolds

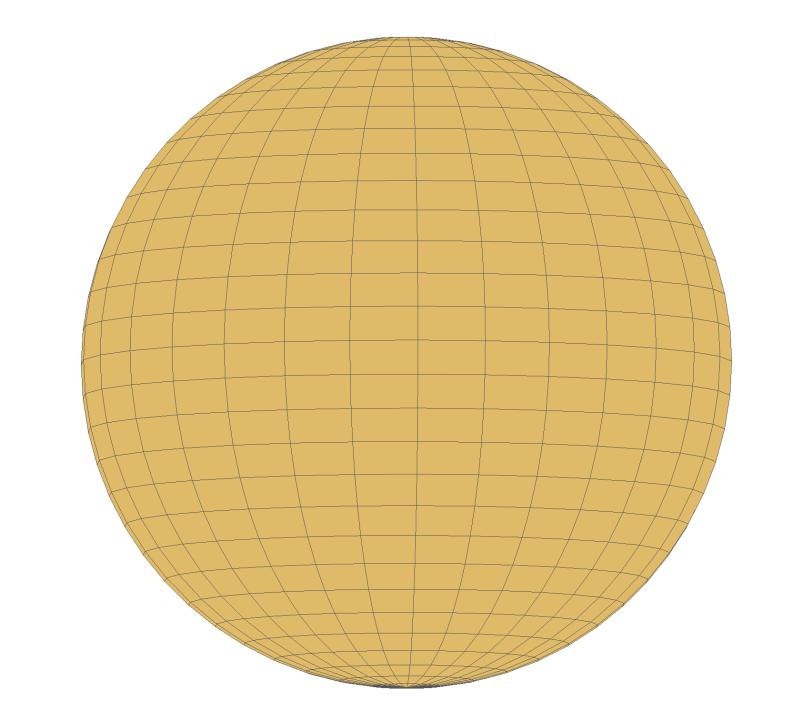
 $\min_{x \in \mathcal{M}} f(x)$

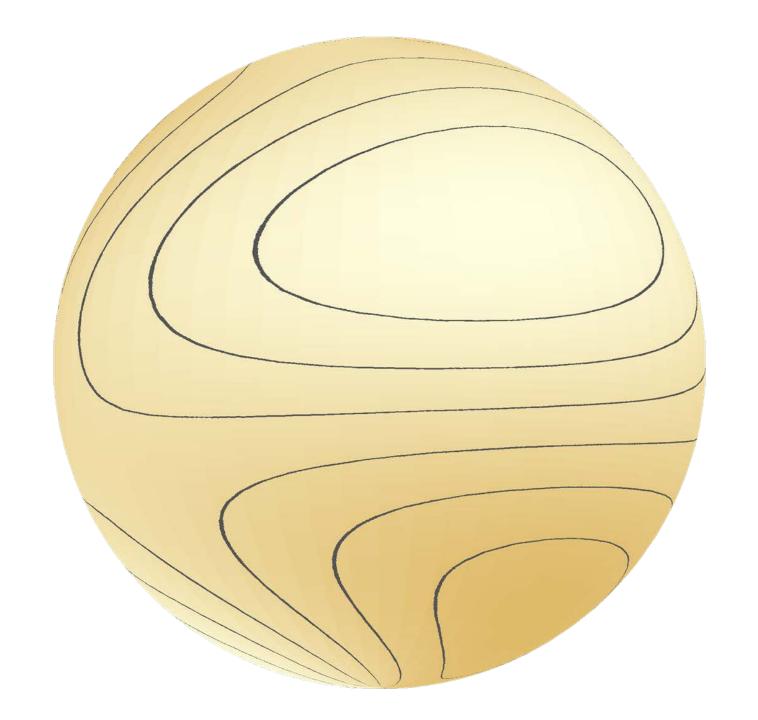


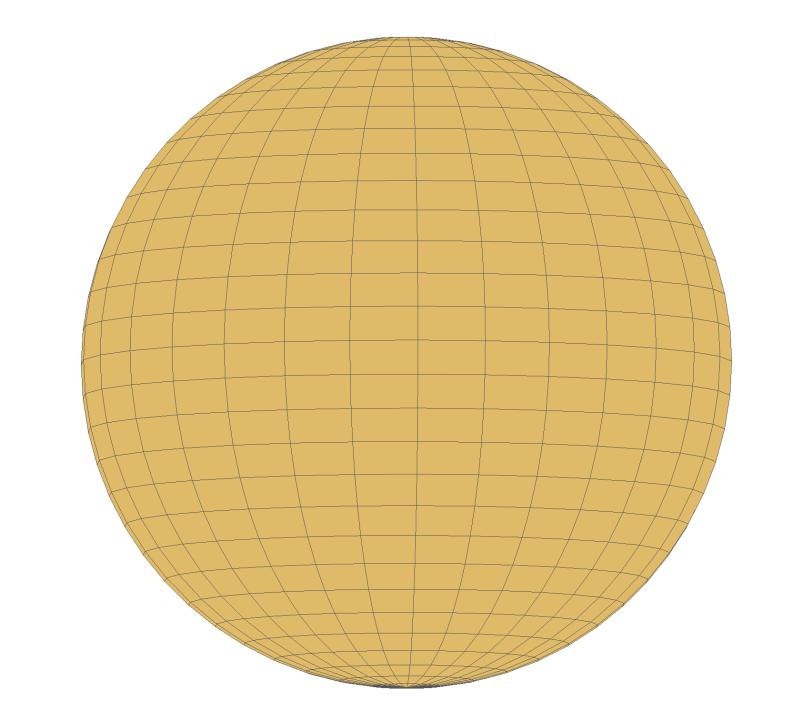
Taking a close look at

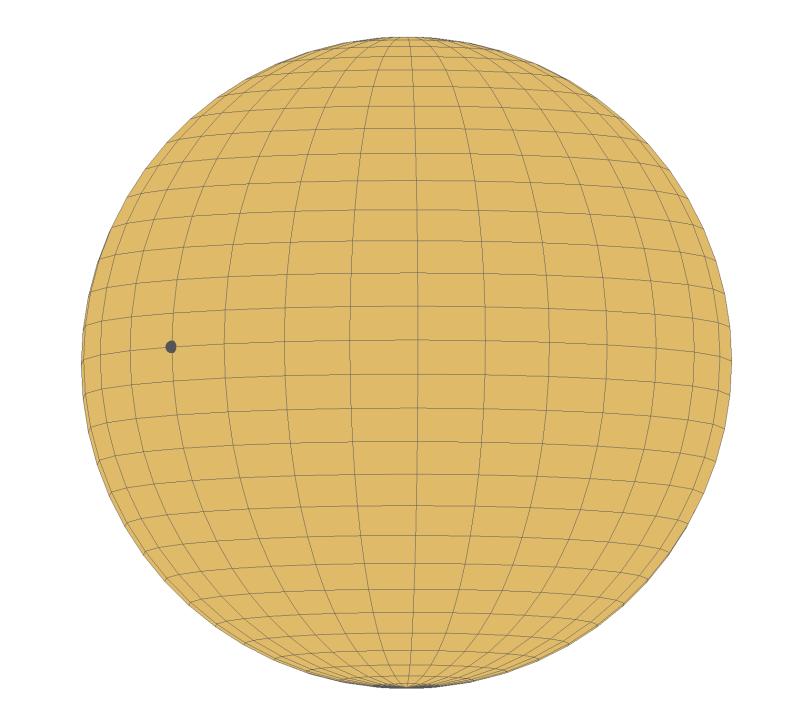
gradient descent

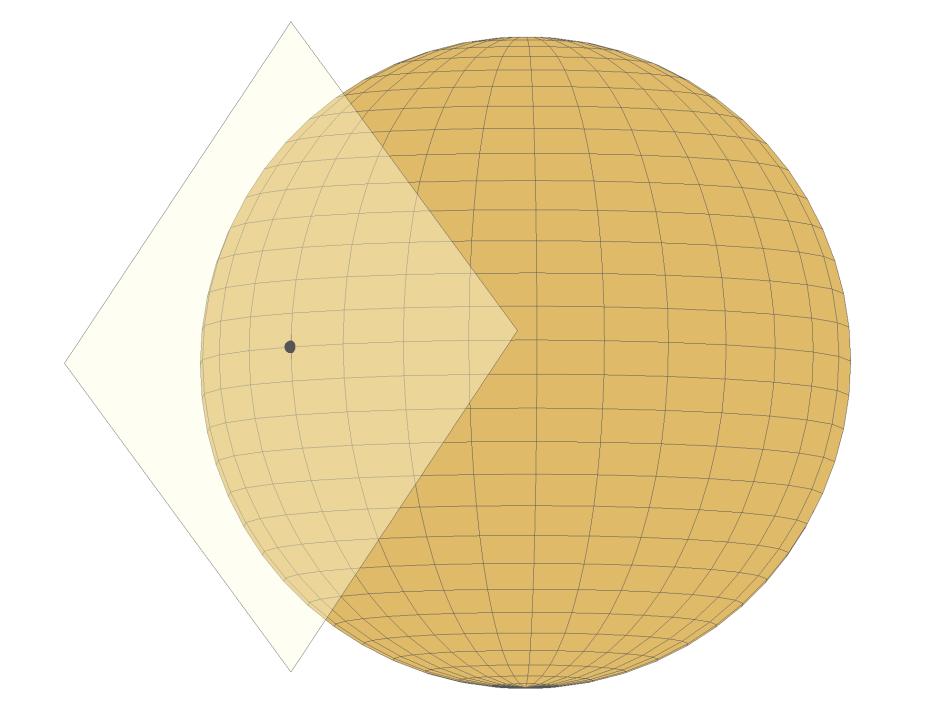


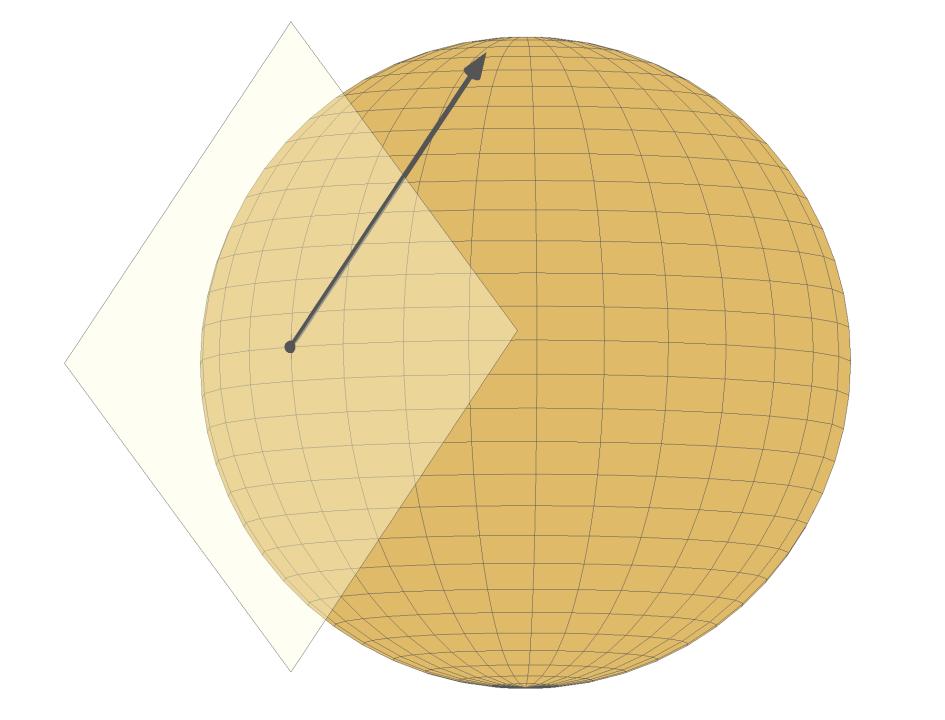


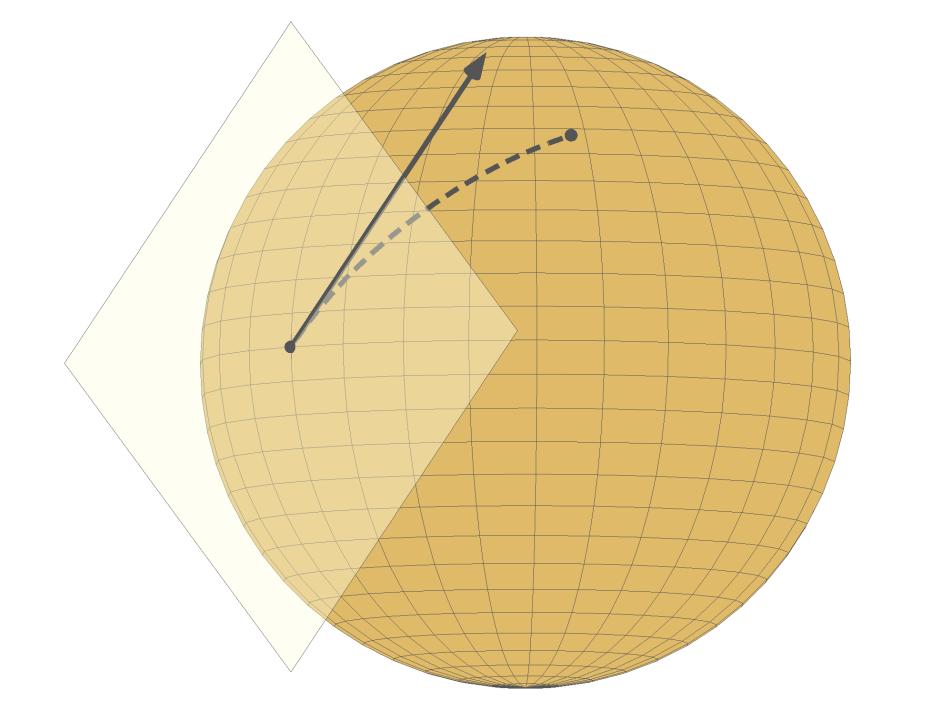












Gifts from the smooth & Riemannian structure

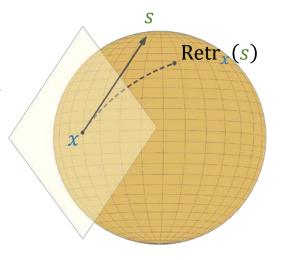
$$\min_{x \in \mathcal{M}} f(x)$$

Tangent spaces: allowed directions

E.g.:
$$T_x \mathcal{M} = \{ s \in \mathbf{R}^n : x^T s = 0 \}$$

Retractions: tools to move around

E.g.: Retr_x(s) =
$$\frac{x+s}{\|x+s\|}$$



Inner products: gradient, Hessian

E.g.:
$$\langle s_1, s_2 \rangle_x = s_1^T s_2$$

These ideas have been around since the 70s (Luenberger, Gabay)

Gradient descent in \mathbf{R}^n

A1 $f(x) \ge f_{low}$ for all $x \in \mathbb{R}^n$

A2 ∇f is L-Lipschitz: $\|\nabla f(y) - \nabla f(x)\| \le L\|y - x\|$

Algorithm:
$$x_{k+1} = x_k - \frac{1}{L}\nabla f(x_k)$$

Complexity:
$$\|\nabla f(x_K)\| \le \varepsilon$$
 for some $K \le 2L(f(x_0) - f_{\text{low}}) \frac{1}{\varepsilon^2}$

How do we generalize **A2** to manifolds?

- A proper Lipschitz definition is inconvenient:

$$\operatorname{dist}(\operatorname{grad} f(y), \operatorname{grad} f(x)) \leq L \cdot \operatorname{dist}(x, y)$$

- Opportunistic approach: extract what we need from the proof.

Gradient descent in \mathbf{R}^n

A1 $f(x) \ge f_{low}$ for all $x \in \mathbb{R}^n$

A2 ∇f is L-Lipschitz: $\|\nabla f(y) - \nabla f(x)\| \le L\|y - x\|$

Algorithm:
$$x_{k+1} = x_k - \frac{1}{L} \nabla f(x_k)$$

Complexity: $\|\nabla f(x_K)\| \le \varepsilon$ for some $K \le 2L(f(x_0) - f_{\text{low}}) \frac{1}{\varepsilon^2}$

$$\mathbf{A2} \Rightarrow |f(y) - f(x) - \langle y - x, \nabla f(x) \rangle| \leq \frac{L}{2} ||y - x||^{2}$$

$$\Rightarrow f(x_{k+1}) - f(x_{k}) + \frac{1}{L} \langle \nabla f(x_{k}), \nabla f(x_{k}) \rangle \leq \frac{1}{2L} ||\nabla f(x_{k})||^{2}$$

$$\Rightarrow f(x_{k}) - f(x_{k+1}) \geq \frac{1}{2L} ||\nabla f(x_{k})||^{2}$$

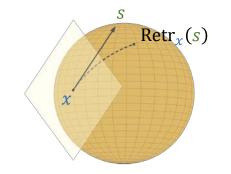
$$\mathbf{A1} \Rightarrow f(x_0) - f_{\text{low}} \ge \sum_{k=0}^{K} f(x_k) - f(x_{k+1}) > \frac{\varepsilon^2}{2L} (K+1)$$

Gradient descent on ${\mathcal M}$

A1 $f(x) \ge f_{low}$ for all $x \in \mathcal{M}$

A2
$$f(\operatorname{Retr}_{x}(s)) - f(x) - \langle s, \operatorname{grad} f(x) \rangle \leq \frac{L}{2} ||s||^{2}$$

Algorithm: $x_{k+1} = \text{Retr}_{x_k} \left(-\frac{1}{L} \text{grad} f(x_k) \right)$



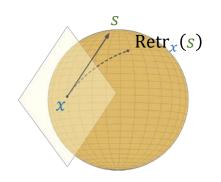
Complexity: $\|\operatorname{grad} f(x_K)\| \le \varepsilon$ with $K \le 2L(f(x_0) - f_{\text{low}}) \frac{1}{\varepsilon^2}$

$$\mathbf{A2} \Rightarrow f(\mathbf{x}_{k+1}) - f(\mathbf{x}_{k}) + \frac{1}{L} \| \operatorname{grad} f(\mathbf{x}_{k}) \|^{2} \le \frac{1}{2L} \| \operatorname{grad} f(\mathbf{x}_{k}) \|^{2}$$
$$\Rightarrow f(\mathbf{x}_{k}) - f(\mathbf{x}_{k+1}) \ge \frac{1}{2L} \| \operatorname{grad} f(\mathbf{x}_{k}) \|^{2}$$

$$\mathbf{A1} \Rightarrow f(x_0) - f_{\text{low}} \ge \sum_{k=0}^{K} f(x_k) - f(x_{k+1}) > \frac{\varepsilon^2}{2L} (K+1)$$

A2
$$f(\operatorname{Retr}_{x}(s)) - f(x) - \langle s, \operatorname{grad} f(x) \rangle \leq \frac{L}{2} ||s||^{2}$$

Assumption on both *f* and Retr.



Satisfied in particular:

- 1. If $\mathcal{M} \subset \mathbf{R}^n$ is compact and ∇f is locally Lipschitz in \mathbf{R}^n .
- 2. If \mathcal{M} is compact and Retr is "nice".

Ongoing research.

Beyond gradient descent on manifolds

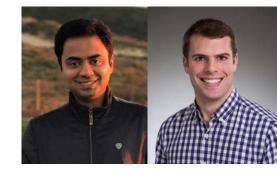
Trust regions

arXiv:1605.08101

$$O(\varepsilon^{-2})$$
 for small gradient $O(\varepsilon^{-3})$ for second-order too

Adaptive regularization with cubics (ARC) arXiv:1806.00065

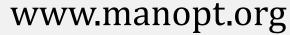
 $O(\varepsilon^{-1.5})$ for small gradient $O(\varepsilon^{-3})$ for second-order too



Optimization algorithms on matrix manifolds

A Matlab toolbox

Manopt



Welcome to Manopt!

A Matlab toolbox for optimization on manifolds

Optimization on manifolds is a powerful paradigm to address nonlinear optimization problems various types of constraints that arise naturally in applications, such as orthonormality or low ra

Download **±**

Get started A

. ABSIL, R. MAHONY & R. SEPULCHRE

