# Worst-case complexity bounds for optimization on manifolds

Nicolas Boumal Princeton University

with Naman Agarwal, Brian Bullins, Coralia Cartis and Pierre-Antoine Absil



## Optimization on manifolds

 $\min_{x \in \mathcal{M}} f(x)$ 



## Taking a close look at

gradient descent

















#### Gifts from the smooth & Riemannian structure

$$\min_{x \in \mathcal{M}} f(x)$$

Tangent spaces: allowed directions

E.g.: 
$$T_x \mathcal{M} = \{ s \in \mathbf{R}^n : x^T s = 0 \}$$

Retractions: tools to move around

E.g.: Retr<sub>x</sub>(s) = 
$$\frac{x+s}{\|x+s\|}$$



Inner products: gradient, Hessian

E.g.: 
$$\langle s_1, s_2 \rangle_x = s_1^T s_2$$

These ideas have been around since the 70s (Luenberger, Gabay)

#### Gradient descent in $\mathbf{R}^n$

**A1**  $f(x) \ge f_{low}$  for all  $x \in \mathbb{R}^n$ 

**A2**  $\nabla f$  is L-Lipschitz:  $\|\nabla f(y) - \nabla f(x)\| \le L\|y - x\|$ 

Algorithm: 
$$x_{k+1} = x_k - \frac{1}{L}\nabla f(x_k)$$

Complexity: 
$$\|\nabla f(x_K)\| \le \varepsilon$$
 for some  $K \le 2L(f(x_0) - f_{\text{low}}) \frac{1}{\varepsilon^2}$ 

How do we generalize **A2** to manifolds?

- A proper Lipschitz definition is inconvenient:

$$\operatorname{dist}(\operatorname{grad} f(y), \operatorname{grad} f(x)) \leq L \cdot \operatorname{dist}(x, y)$$

- Opportunistic approach: extract what we need from the proof.

#### Gradient descent in $\mathbf{R}^n$

**A1**  $f(x) \ge f_{low}$  for all  $x \in \mathbb{R}^n$ 

**A2**  $\nabla f$  is L-Lipschitz:  $\|\nabla f(y) - \nabla f(x)\| \le L\|y - x\|$ 

Algorithm: 
$$x_{k+1} = x_k - \frac{1}{L} \nabla f(x_k)$$

Complexity:  $\|\nabla f(x_K)\| \le \varepsilon$  for some  $K \le 2L(f(x_0) - f_{\text{low}}) \frac{1}{\varepsilon^2}$ 

$$\mathbf{A2} \Rightarrow |f(y) - f(x) - \langle y - x, \nabla f(x) \rangle| \leq \frac{L}{2} ||y - x||^{2}$$

$$\Rightarrow f(x_{k+1}) - f(x_{k}) + \frac{1}{L} \langle \nabla f(x_{k}), \nabla f(x_{k}) \rangle \leq \frac{1}{2L} ||\nabla f(x_{k})||^{2}$$

$$\Rightarrow f(x_{k}) - f(x_{k+1}) \geq \frac{1}{2L} ||\nabla f(x_{k})||^{2}$$

$$\mathbf{A1} \Rightarrow f(x_0) - f_{\text{low}} \ge \sum_{k=0}^{K} f(x_k) - f(x_{k+1}) > \frac{\varepsilon^2}{2L} (K+1)$$

#### Gradient descent on ${\mathcal M}$

**A1**  $f(x) \ge f_{low}$  for all  $x \in \mathcal{M}$ 

**A2** 
$$f(\operatorname{Retr}_{x}(s)) - f(x) - \langle s, \operatorname{grad} f(x) \rangle \leq \frac{L}{2} ||s||^{2}$$

Algorithm:  $x_{k+1} = \text{Retr}_{x_k} \left( -\frac{1}{L} \text{grad} f(x_k) \right)$ 



Complexity:  $\|\operatorname{grad} f(x_K)\| \le \varepsilon$  with  $K \le 2L(f(x_0) - f_{\text{low}}) \frac{1}{\varepsilon^2}$ 

$$\mathbf{A2} \Rightarrow f(\mathbf{x}_{k+1}) - f(\mathbf{x}_{k}) + \frac{1}{L} \| \operatorname{grad} f(\mathbf{x}_{k}) \|^{2} \le \frac{1}{2L} \| \operatorname{grad} f(\mathbf{x}_{k}) \|^{2}$$
$$\Rightarrow f(\mathbf{x}_{k}) - f(\mathbf{x}_{k+1}) \ge \frac{1}{2L} \| \operatorname{grad} f(\mathbf{x}_{k}) \|^{2}$$

$$\mathbf{A1} \Rightarrow f(x_0) - f_{\text{low}} \ge \sum_{k=0}^{K} f(x_k) - f(x_{k+1}) > \frac{\varepsilon^2}{2L} (K+1)$$

**A2** 
$$f(\operatorname{Retr}_{x}(s)) - f(x) - \langle s, \operatorname{grad} f(x) \rangle \leq \frac{L}{2} ||s||^{2}$$

Assumption on both *f* and Retr.



#### Satisfied in particular:

- 1. If  $\mathcal{M} \subset \mathbf{R}^n$  is compact and  $\nabla f$  is locally Lipschitz in  $\mathbf{R}^n$ .
- 2. If  $\mathcal{M}$  is compact and Retr is "nice".

Ongoing research.

### Beyond gradient descent on manifolds

#### **Trust regions**

arXiv:1605.08101

$$O(\varepsilon^{-2})$$
 for small gradient  $O(\varepsilon^{-3})$  for second-order too



# **Adaptive regularization with cubics** (ARC) arXiv:1806.00065

 $O(\varepsilon^{-1.5})$  for small gradient  $O(\varepsilon^{-3})$  for second-order too





Optimization algorithms on matrix manifolds

#### A Matlab toolbox



Manopt





Welcome to Manopt!

A Matlab toolbox for optimization on manifolds

Optimization on manifolds is a powerful paradigm to address nonlinear optimization problems various types of constraints that arise naturally in applications, such as orthonormality or low ra

Download **±** 

Get started A



. ABSIL, R. MAHONY & R. SEPULCHRE

