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Max-Cut relaxation



Max-Cut

Given a graph, split its nodes in two classes,
maximizing the number of in-between edges.
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One of Karp's 21 NP-complete problems.



Max-Cut semidefinite relaxation

A is the adjacency matrix of the graph:

min Tr(AX) s.t. diag(X) =1,X >0 ,

Goemans & Williamson '95
Approximate the best cut within 87% by
randomized projection of optimal X to {£+1}".



Convex, but IPM’s run out of memory
(and time)

For a 2000 node graph (edge density 1%),
CVX runs out of memory on my former
laptop. On the new one, it returns with poor
accuracy after 3 minutes.

The methods we will discuss solve the SDP
in 6 seconds on old laptop, with certificate.



Max-Cut SDP has a low-rank solution

mXin Tr(AX) s.t. diag(X) =1,X >0

Shapiro ‘82, Grone et al. ‘90, Pataki ‘94, Barvinok ‘95
There is an optimal X whose rank r satisfies

1
r(r;— )S

n

A fortiori, r < /2n.




This justifies restricting the rank

mXin Tr(AX) s.t. diag(X) =1,X = 0,

Parameterize as with Y of size n X

min Tr(AYYT) s.t. diag(YY?) =1

Y:nXx

Lower dimension and no conic constraint!
Burer & Monteiro ‘03, ‘05, Journée, Bach, Absil, Sepulchre "10

But



Key feature: search space is smooth
min Tr AYYT) S. t.
Y nXp

Constraints — rows of Y have unit norm.

The search space is a
: smooth cost function
on a smooth manifold.




With Bandeira & Voroninski, arXiv 1606.04970

Our main result for Max-Cut

min Tr(AYYT) s.t. diag(YYT) =1

Y:nX

If p(p;l) > n, for , are optimal.
Ifp >n/2, for , are optimal.

sop: second-order critical point (zero gradient, psd Hessian)



Main proof ingredients

For all feasible X,
: _ _ 0 < Tr(SX)
1. X =YY" is optimal iff _ Tr(4%) — Tr(ddiag(AYYT)X)

= Tr(AX) — Tr(AYYT).

= S(Y) = A — ddiag(AYYT) > 0
2. IfYis and , S(Y) =0

3. For almost all 4, all critical points are
gP(+1) > ).

rank deficient (i



With Bandeira & Voroninski, arXiv 1606.04970

Main result for smooth SDP’s

min Tr(4X)s.t. Lin(X) =b,X =0

nXxXn
: T : T —
min Tr(AYY") s.t. Lin(YYT) = b

[f the search space in X is

and the search spacein Y is a ,
£ p(p+1)

and i > #constraints, then,

for almost all 4, all sop’s are optimal.



Why the manifold assumption?

What can we compute?
—KKT points.

When are KKT conditions necessary at Y?
—When constraint qualifications hold atY.

What if CQ’'s hold atall Y’s?
— Set of Y’s is a smooth manifold.



Covers a range of applications

Max-Cut

Z--synchronization

Community detection in stochastic block model
Matrix cut norm

Phase-Cut for phase retrieval

Phase synchronization

Orthogonal-Cut (synchronization of rotations)



min f (x)

Optimization on manifolds



Optimization on many manifolds

Spheres, orthonormal bases (Stiefel),
rotations, positive definite matrices,
fixed-rank matrices, Euclidean distance
matrices, semidefinite fixed-rank matrices,
shapes, linear subspaces (Grassmann), phases,
essential matrices, special Euclidean group,
fixed-rank tensors, Euclidean spaces...

Products and quotients of all of these,
real and complex versions...
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Taking a close look at
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— We need Riemannian geometry

At each point x in the search space M

We linearize M into a T, M
And pick a onT, M.
This gives intrinsic notions of / '

and



An excellent book

Optimization algorithms on
matrix manifolds

A Matlab toolbox

www.manopt.org

Manopt # Home | A Tutorial & Forum X About B Contact

Welcome to Manopt!

A Matlab toolbox for optimization on manifolds

Optimization on manifolds is a powerful paradigm to address nonlinear optimization problems.

With Mishra, Absil & Sepulchre

T

various types of constraints that arise naturally in applications, such as orthonormality or low ra



Example: Max-Cut relaxation

min Tr(AYYT) s.t. diag(YY?) =1

Y:nX

Rows of Y have unit norm:

space: {V:diag(YYT + YYT) = 0}

: project 24Y to tangent space. /

: normalize rows of Y + Y.



function Y = maxcut manopt (A)

end

Select an appropriate relaxation rank p.
= size (A, 1);
= cell (sgrt(2*n));

‘O 3B o°

% Select the manifold to optimize over.
problem.M = obliquefactory(p, n, true);

% Define the cost function to be minimized.
problem.cost = @(Y) sum(sum(Y.* (A*Y)));
problem.egrad = Q@(Y) 2* (A*Y);

problem.ehess = @(Y, Ydot) 2* (A*Ydot);

0
©°
0

©°

random 1nitialization, default parameters.)

Call a standard solver
(
= trustregions (problem);

H

min Tr (AYYT) s.t. diag (YYT) =1 |

Y:nXp
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>> Y = maxcut manopt (A)

acc TR+ k: 1 num inner:
acc k: 2 num inner:
acc k: 3 num inner:
acc k: 4 num inner:
acc k: S num inner:
acc k: 6 num inner:
REJ TR- k: 7 num inner:
acc TR+ k: 8 num inner:
acc k: 9 num inner:
acc k: 10 num_ inner:
acc k: 11 num_ inner:
acc k: 12 num_ inner:
acc k: 13 num inner:
acc k: 14 num inner:
acc k: 15 num inner:
acc k: 16 num inner:

Gradient norm tolerance
Total time is 5.14 [s]

18
43
48
67
89
123
224

reached;

f: -1.189330e+01 |lgrad|: 3
f: -5.933834e+03 |grad|: 3
f: -1.092386e+04 |grad|: 2
f: -1.344741e+04 |grad|: 2
f: -1.541521e+04 lgrad|: 1
f: -1.616969e+04 lgrad|: 7
f: -1.64145%e+04 |grad|: 4
f: -1.64145%e+04 |lgrad|: 4
f: -1.654937e+04 |grad]|: 1
f: -1.656245e+04 |grad]|: 3
f: -1.656370e+04 |grad|: 3
f: -1.656377e+04 lgrad|: 1
f: -1.656378e+04 |lgrad|: 5
f: -1.656378e+04 |grad]|: 2
f: -1.656378e+04 |grad|: 2
f: -1.656378e+04 lgrad|: 1
f: -1.656378e+04 lgrad|: 1

options.tolgradnorm

Optimality gap: n - Amin(S(Y)) =—4.2-10"°

.969772e+02
.214287e+02
.744089e+02
.542660e+02
.351628e+02
.579978e+01
.638172e+01
.638172e+01
.057115e+01
.576517e+00
.951183e-01
.330375e-01
.752944e-02
.430253e-02
.475079e-03
.896680e-05
.103767e-09

le-00.

8 10 12 14 16



Convergence guarantees for
Riemannian

Global convergence to

Linear convergence rate locally.

Reach |[gradf (x)|| < €in O (812) iterations

under Lipschitz assumptions.
With Cartis & Absil (arXiv 1605.08101).




Convergence guarantees for
Riemannian

Global convergence to

Quadratic convergence rate locally.

lgradf (x)|| < € and Hessf(x) = —el in O (813)

iterations under Lipschitz assumptions.
With Cartis & Absil (arXiv 1605.08101).




Low-rank matrix completion

Linear Algebra and its Applications 475 (2015) 200239

Contents lists available at ScienceDirect

Linear Algebra and its Applications Rbplications

Riemannian preconditioning for tensor completion

s

ELSEVIER www elsevier.com/locate/laa
Hiroyuki Kasai* Bamdev Mishrat
Graduate School of Information Systems, Department of EECS, Low-rank matrix completion via preconditioned Crossbark
The university of Electro-Communications University of Ligge g . . . :
Chofu-shi, Tokyo, 182-8585, Japan 4000 Lizge. Belgium optimization on the Grassmann manifold
kasaifis.uec.ac.jp b.mishraulg.ac.be . a1
Nicolas Boumal **, P.-A. Absil”
i I;rzria & D.I., UMRVSS,{LS, Egole Normale Sy}gérieufe{, 7Paris, France
Abstract SIAM J. OPTIM. (@ 2013 Society for Industrial and Applied Mathematics

Vol. 23, No. 2, pp. 1214-1236
We propose a novel Riemannian preconditioning approach for the
LOW-RANK MATRIX COMPLETION BY RIEMANNIAN
OPTIMIZATION*
BART VANDEREYCKEN'

Journal of Machine Learning Research 11 (2010) 2057-2078 Submitted ¢

. . . | Abstract. The matrix completion problem consists of finding or approximating a low-rank ma-
Matrix Completlon from NOlsy Entri trix based on a few samples of this matrix. We propose a new algorithm for matrix completion that
minimizes the least-square distance on the sampling set over the Riemannian manifold of fixed-rank

matrices. The algorithm is an adaptation of classical nonlinear conjugate gradients, developed within

Raghunandan H. Keshavan RAC  the framework of retraction-based optimization on manifolds. We describe all the necessary objects
Andrea Montanari* MON  from differential geometry necessary to perform optimization over this low-rank matrix manifold,
Sewoong Oh seen as a submanifold embedded in the space of matrices. In particular, we describe how metric

projection can be used as retraction and how vector transport lets us obtain the conjugate search
directions. Finally, we prove convergence of a regularized version of our algorithm under the assump-
tion that the restricted isometry property holds for incoherent matrices throughout the iterations.
Stanford, CA 94304, USA The numerical experiments indicate that our approach scales very well for large-scale problems and
compares favorably with the state-of-the-art, while outperforming most existing solvers.

Department of Electrical Engineering
Stanford University

Editor: Tommi Jaakkola Key words. matrix completion, low-rank matrices, optimization on manifolds, differential

geometry, nonlinear conjugate gradients, Riemannian manifolds, Newton 32
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(Gaussian mixture models

Matrix Manifold Optimization
for Gaussian Mixture Models

Reshad Hosseini, Suvrit Sra,
2015 (NIPS)

K
p(x) = ijl a;pn (x5 g, 35), x € RY,

and where p,s is a (multivariate) Gaussian with mean g € R and covariance ¥ > 0. That is,

pa (s 1, ) = det ()72 (2m) "2 exp(—3(x — ) TNz — p)).

Given i.i.d. samples {x1,...,T,}, we wish to estimate {f1; € R, EAJ,, - U}tfil and weights o €
A, the K-dimensional probability simplex. This leads to the GMM optimization problem

K

max Zlog(zjzl o, P (45 45, Zj)). (2.1)
i=1 '

a€Ak,{pn; B =0},

33



Dictionary learning

Complete

Dictionary Recovery over the Sphere

I: Overview and the Geometric Picture

Ju Sun, Student Member, IEEE, Qing Qu, Student Member, IEEE, and John Wright, Member, IEEE

Abstract

We consider the problem of recovering a complete (i.e., square and invertible) matrix Ag, from ¥ € R"*P with
Y = Ay Xy, provided X, is sufficiently sparse. This recovery problem is central to the theoretical understanding
of dictionary learning, which seeks a sparse representation for a collection of input signals, and finds numerous

applications in modern
recovers Ap when X
results based on efficier
for any constant 4 € (0

Our algorithmic pi
constraint, and hence i
problem is tractable, we
shows that with high pr
us to design a Riemann
an arbitrary initializatio
shed light on other prol

This paper provide
objective landscape. In 1
are presented.
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Fig. 2: Why is dictionary learning over S™~! tractable? Assume the target dictionary Ag is orthogonal. Left:
Large sample objective function Ex, [f (g)]. The only local minimizers are the columns of Ay and their negatives.
Center: The same function, visualized as a height above the plane ali (aq 1s the first column of Ay, and is also a
global minimizer). Right: Around a, the function exhibits a small region of positive curvature, a region of large

gradient, and finally a region in which the direction away from a; is a direction of negative curvature. »



Phase retrieval

A Geometric Analysis of Phase Retrieval

Ju Sun, Qing Qu, and John Wright
{js4038, qg2105, jw2966}0@columbia.edu

Department of Electrical Engineering, Columbia University, New York, USA
January 31, 2016

Abstract

Can we recover a complex signal from its Fourier magnitudes? More generally, given a set
of m measurements, y, = |q£:{:| for k=1 m_is it nossihle to recover = = O (i o lenoth-n
complex vector)? This is the generalize
task in various disciplines. Natural nor
practice, but lack clear theoretical expli
this gap. We show that when the measu
and the number of measurements is le
natural least-squares formulation for (
there are no spurious local minimizers,
equivalent copies; and (2) the objective
point. This structure allows a numbe
minimizer without special initializatio
second-order trust-region algorithm.

15 -1 0.5 0 0.5 1 1.5

Keywords. Phase retrieval, Nonconve

try, Ridable saddles, Trust-region methoc Figure 5: Function landscape of (1.1) for # = [1;0] and m — oo for the masked Fourier

T ————————— transform measurements (coded diffraction model [CLS15b]). Compared to the landscape
under the Gaussian model (Figure 2), the landscape here has an analogous shape qualitatively.
The benign geometric structure is evident. 35




Phase synchronization

arXiv:1601.06114v2 [math.OC] 27 Mar 2016

Nonconvex phase synchronization

Nicolas Boumal®
March 29, 2016

Abstract

We estimate n phases (angles) from noisy pairwise relative phase measure-
ments. The task is modeled as a nonconvex least-squares optimization problem.
It was recently shown that this problem can be solved in polynomial time via
convex relaxation, under some conditions on the noise. In this paper, under
similar but more restrictive conditions, we show that a modified version of the
power method converges to the global optimizer. This is simpler and (empiri-
cally) faster than convex approaches. Empirically, they both suceeed in the same
regime. Further analysis shows that, in the same noise regime as previously,
second-order necessary optimality conditions for this quadratically constrained
quadratic program are also sufficient, despite nonconvexity.

1 Introduction

We consider the problem of estimating n phases {complex numbers with unit modulus)
based on noisy measurements of the relative phases. The target parameter is

zEﬂCn%[IEC”:|J’.1|=---=|I,1|=1}._ (1)
and the measurements Cy; &= z;Z; are stored in the Hermitian matrix
C=zz"+A, (2)

where A is a Hermitian perturbation. Motivated by the scenario where A contains white
(Gaussian noise, we focus on the assoclated maximum likelihood estimation problem (it

36
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Synchronization of rotations

Robust estimation
of rotations, 2013
B., Singer and Absil

Expected MSE, estimated over 100 realizations

random estimator

random estimator

EIG (initial guess)
LUD

|
|
|
L 10—1 |
! |
| EIG (initial guess) |
! |
! |
I ' ' ' ' 103 | ' '
5% 25% 50% 5% 100% 101 100 - 101

Proportion p of good measurements Concentration x of the good measurements



Sensor network localization

Noisy sensor network localization, robust facial reduction
and the Pareto frontier

Cheung, Drusvyatskiy, Krislock and Wolkowicz 2014

Figure 2: Illustration of robust facial reduction with refinement applied on an instance with 1000 sensors
(no anchors) on a [—0.5,0.5]% box, with noise factor 0.05 and radio range 0.1. From left to right: (1) using
Algorithm [] without refinement (RMSD= 61.52%R); (2) using Algorithm [1] with refinement via Manopt
(RMSD= 1.39%R); (3) using only Manopt (RMSD= 380.59%£F). Blue: true location; red: estimated location

and discrepancy.
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Protein structure determination
in NMR spectroscopy

10 10-

Residual Dipolar Coupling, s : .

0 0 5

Protein Backbone Conformation “5~L—~—= | = NS
and Semidefinite Programming |

Yuehaw Khoo, Amit Singer . :
and David Cowburn, 2016 S >l >

(d) (e)

Figure 4 The trace of protein backbone drawn using N, CA and C. The black,
blue and red curves come from the X-ray model 1UBQ, RDC-SDP solution and
RDC-NOE-SDP respectively.

RDC-SDP
(No chirality constraint/ No ManOpt)
1.2 ~A-RDC-SDP (No chirality constraint)
—B—RDC-SDP (No ManOpt)
-A-RDC-SDP

1H —E—RDC-NOE-SDP (No ManOpt)

- A-RDC-NOE-SDP

(a) (b) & o6l

Figure 1 (a) Example of an articulated structure with joints with indices J;’s
(Red dots) and H;’s. The hinges are represented by black bars in the figure. (b) 0.2}
Protein backbone consists of peptide planes and CA bodies. These rigid units
are chained together at the bonds (N, CA) and (C,CA).




Nonsmooth with MADMM

MADMM: a generic algorithm for non-smooth optimization
on manifolds, Kovnatsky, Glashoff, Bronstein, 2015

Compressed modes

A

_ - - A : - Functional correspondence

Figure 1: The first six compressed modes of a human mesh containing n = 8K points compumd p
using MADMM. Parameter u = 10~2 and three manifold optimization iterations in X -step we ——

used in this experiment. /
Groundtruth
= Classical MDS .
o MADMM >
‘g% o 002
° * 2@ ’ by [
. ) e P

Figure 4:  Examples of correspondences obtained with MADMM (top) and least-squares solution

8%y > g’ ( 5, ® (bottom). Similar colors encode corresponding points. Bottom left: examples of ggrrespondence
RObUSt SN L 3% . between a pair of shapes (outliers are shown in red).
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Take home message

Optimization on manifolds has many
and is easy to try with

[t comes with the same as
unconstrained nonlinear optimization.

For some problems, we get
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Max-Cut

A is the adjacency matrix of the graph:

1—x%
max zAU
o Xn€{t1}

max 1741 — xTAx
X1,.,Xn€{+1}

minx”Ax s.t. xf = 1Vi
X



Max-Cut

minx”Ax s.t. xf = 1Vi
X

min Tr(Axx") s.t. (xxT) = 1Vi
X Ll

min Tr(4X) s.t. diag(X) = 1,

X
X=0
rank(X) =1



This is not projected gradients
V) —Vf(x)

—grad f (x)
Optimization on manifolds is

There is no need for an embedding space.
Works for abstract manifolds,
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