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“How does curvature affect optimization?”

Picture: http://homepages.math.uic.edu/~ddumas/teaching/2017/fall/math549 /boy/



Optimization on smooth manifolds

mln f(x) subjecttox € M /((

Linear spaces —— |

Low rank (matrices, tensors)
Orthonormality (Grassmann, Stiefel, rotations)
Positivity (positive definiteness, positive orthant)

Symmetry (quotient manifolds)



A Riemannian structure gives us
gradients and Hessians

The essential tools of smooth optimization are
defined generally on Riemannian manifolds.

Unified theory, broadly applicable algorithms.

First ideas from the ‘70s.
First practical in the ‘90s.



Non-convexity: reasonable targets

lgradf (x)]|| < &, Amin(Hessf (x)) = —/e

Want: iteration complexity

Particularly relevant for
e Burer-Monteiro for SDPs under some conditions
 Dictionary learning / sparsest vector in a subspace
e Matrix / tensor completion
e Group synchronization (variants in SBM, SLAM, SfM, ...)
* (And also geodesic convexity)



“All other things being equal, is it harder
to optimize if the space is more curved?”

Picture: http://homepages.math.uic.edu/~ddumas/teaching/2017/fall/math549 /boy/



K\ Whatever that means...

“All other things being equal, is it harder
to optimize if the space is more curved?”

Picture: http://homepages.math.uic.edu/~ddumas/teaching/2017/fall/math549 /boy/
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Does curvature impede optimization?

Message 1

Under natural Lipschitz assumptions,
for some optimal algorithms, it does not hurt.

Message 2

Unclear for more sophisticated algorithms.



Target: approximate critical points

lgradf (x)|l < &

[teration complexity of ?

1. Classical analysis in R™.

( ( 2 E;@tended to manifolds ~2016. /
R 4



Al F() > fio forallx € R? Gradient descent in R"
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Lipschitz gradients
on complete manifolds

Using parallel transport and exponential map:

ngadf( )—P (_xgradf(x)H < L - dist(x, v),

P, .. is parallel transport along y(t) = Exp,.(ts)
from x = y(0) to vy = y(1) = Exp.,.(s).

90UB1IS JOI OSIM ' :o8ew|

Already used for optimization in 1998 (da Cruz de Neto)



Lipschitz gradients
on complete manifolds

Using parallel transport and exponential map:

|gradf (v) — P, gradf ()| < L - lIs]l,

P, .. is parallel transport along y(t) = Exp,.(ts)
from x = y(0) to vy = y(1) = Exp.,.(s).

90UB1IS JOI OSIM ' :o8ew|

Implies the key quadratic bound:

f(Expx(S)) — f(x) — (s,gradf (x)) < %”S“2 /s B o)

1 X
RGD: ;... = Exp,, (-~ gradf(x,))



Gradient descent on M
Al f(x) = fiow forallx e M

Az f(Exp.() = f() — (s.gradf G <52
Algorithm: = Exp,,, (_ % gradf(xk))

Complexity: ||gradf (xg)|| < e with K < 2L(f(xg) — fiow) Slz
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Gradient descent on M

Al f(x) = fiow forallx e M
A2 ngadf( )—P @xgradf(x)” < L - dist(x, v)

Algorithm: = EXp,, (— %gradf(xk))

= |lgradf (xg)|| < e with K < 2L(f(xg) — flow)giz

Same as in R™, where it is tight and optimal.

In particular, it is dimension free and !



Second-order target
lgradf (x)|| < ¢, Amin(Hessf(x)) = —/¢

Assume

Implies Riemannian versions of the usual inequalities.

Riemannian trust regions: 0(e7%5)

Riemannian cubic regularization: 0(8_1'5)

These complexities also dimension and
Cubic regularization is also optimal in R".



What is the role of curvature so far?

In R", GD and ARC are optimal under Lipschitz.
Same upper bounds on manifolds.

Thus, in those cases.
Might it ? What about ?

Do Lipschitz constants ?



For more sophisticated algorithms,
known bounds suffer from curvature

Several recent papers study advanced algorithms for,
e.g., Hessian-free and

Their analyses in R™ use Lipschitzness in more ways
than the simple inequalities we used earlier.

Proof techniques often involve on
manifolds to track iterates: comes up.

ssewaanegau/wod jepowedidojowsodsnuel(//:sdyy :a3ew|



Does curvature affect Lipschitz cnsts?

Here are two possible ways to address this.
Consider f: R"™ — R with Lipschitz gradient:

1. Restrict to a Riemannian submanifold M < R".

2. Deform R"™ into a Riemannian manifold.

Case in point: one-dimensional manifolds have no
intrinsic curvature, yet see both effects.
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Riemannian Lipschitz, with Riemannian curvature in bounds

RSVRG (Zhang, Reddi & Sra 2016)
SGD with averaging (Tripuraneni, Flammarion, Bach & Jordan 2018)
Perturbed gradient descent (Sun, Flammarion & Fazel 2019)
More stochastic methods (Kasai, Sato & Mishra 2016/17; Zhang et al. 2016)
Geodesically convex optimization (Zhang & Sra 2016)

Also with (steps toward) acceleration (Zhang & Sra; Alimisis et al. 2020)

Riemannian Lipschitz, no Riemannian curvature in bounds

Gradient descent (Bento, Ferreira & Melo 2017)

Trust-regions (B., Absil & Cartis 2018)

Adaptive regularization with cubics (Agarwal, B., Bullins & Cartis 2019)
R-Spider (stochastic) (Zhang, Zhang & Sra 2018)

Frank-Wolfe (Weber & Sra 2017)

Pullback Lipschitz, no curvature in bounds, but maybe hidden

Gradient descent (B., Absil & Cartis 2018)

Trust-regions

Adaptive regulization with cubics

Perturbed gradient descent (Criscitiello & Boumal, 2019)
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