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https://nypost.com/2019/02/19/youtube-is-helping-the-flat-earth-conspiracy-movement-grow/



https://www.brookeandjubalradio.com/featured/brooke-and-jubal/content/2018-03-09-second-date-tommy-and-hope-why-on-earth/



https://www.vice.com/en_us/article/mbyak8/apparently-some-people-believe-the-earth-is-shaped-like-a-donut-1

“Apparently, some people believe 
the Earth is shaped like a donut.”

—Vice.com, Nov. 2018



“How does curvature affect optimization?”
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Optimization on smooth manifolds
min
𝑥𝑥
𝑓𝑓 𝑥𝑥 subject to 𝑥𝑥 ∈ ℳ

Linear spaces
Unconstrained; linear equality constraints
Low rank (matrices, tensors)
Recommender systems, large-scale Lyapunov equations, …
Orthonormality (Grassmann, Stiefel, rotations)
Dictionary learning, structure from motion, SLAM, PCA, ICA, SBM,…
Positivity (positive definiteness, positive orthant)
Metric learning, Gaussian mixtures, diffusion tensor imaging, …
Symmetry (quotient manifolds)
Invariance under group actions
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A Riemannian structure gives us 
gradients and Hessians

The essential tools of smooth optimization are 
defined generally on Riemannian manifolds.

Unified theory, broadly applicable algorithms.

First ideas from the ‘70s.
First practical in the ‘90s.
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Non-convexity: reasonable targets

grad𝑓𝑓(𝑥𝑥) ≤ 𝜀𝜀, 𝜆𝜆min Hess𝑓𝑓 𝑥𝑥 ≥ − 𝜀𝜀

Want: worst-case iteration complexity

Particularly relevant for benign non-convexity
• Burer-Monteiro for SDPs under some conditions
• Dictionary learning / sparsest vector in a subspace
• Matrix / tensor completion
• Group synchronization (variants in SBM, SLAM, SfM, …)
• (And also geodesic convexity)
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“All other things being equal, is it harder 
to optimize if the space is more curved?”
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“All other things being equal, is it harder 
to optimize if the space is more curved?”
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Whatever that means…



Does curvature impede optimization?

Message 1

Under natural Lipschitz assumptions,
for some optimal algorithms, it does not hurt.

Message 2

Unclear for more sophisticated algorithms.
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Target: approximate critical points

grad𝑓𝑓(𝑥𝑥) ≤ 𝜀𝜀

Iteration complexity of gradient descent?

1. Classical analysis in 𝐑𝐑𝑛𝑛.

2. Extended to manifolds ~2016.
Zhang & Sra; B., Absil & Cartis; Bento, Ferreira & Melo
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Gradient descent in 𝐑𝐑𝑛𝑛A1 𝑓𝑓 𝑥𝑥 ≥ 𝑓𝑓low for all 𝑥𝑥 ∈ 𝐑𝐑𝑛𝑛
A2 𝛻𝛻𝑓𝑓 is 𝐿𝐿-Lipschitz: 𝛻𝛻𝑓𝑓 𝑦𝑦 − 𝛻𝛻𝑓𝑓(𝑥𝑥) ≤ 𝐿𝐿 𝑦𝑦 − 𝑥𝑥

Algorithm: 𝑥𝑥𝑘𝑘+1 = 𝑥𝑥𝑘𝑘 −
1
𝐿𝐿
𝛻𝛻𝑓𝑓(𝑥𝑥𝑘𝑘)

Complexity: 𝛻𝛻𝑓𝑓(𝑥𝑥𝐾𝐾) ≤ 𝜀𝜀 for some 𝐾𝐾 ≤ 2𝐿𝐿 𝑓𝑓 𝑥𝑥0 − 𝑓𝑓low
1
𝜀𝜀2

A2 ⇒ 𝑓𝑓 𝑦𝑦 − 𝑓𝑓 𝑥𝑥 − 𝑦𝑦 − 𝑥𝑥,𝛻𝛻𝑓𝑓(𝑥𝑥) ≤
𝐿𝐿
2

𝑦𝑦 − 𝑥𝑥 2

⇒ 𝑓𝑓 𝑥𝑥𝑘𝑘+1 − 𝑓𝑓 𝑥𝑥𝑘𝑘 +
1
𝐿𝐿
𝛻𝛻𝑓𝑓 𝑥𝑥𝑘𝑘 ,𝛻𝛻𝑓𝑓(𝑥𝑥𝑘𝑘) ≤

1
2𝐿𝐿

𝛻𝛻𝑓𝑓 𝑥𝑥𝑘𝑘 2

⇒ 𝑓𝑓 𝑥𝑥𝑘𝑘 − 𝑓𝑓 𝑥𝑥𝑘𝑘+1 ≥
1
2𝐿𝐿

𝛻𝛻𝑓𝑓 𝑥𝑥𝑘𝑘 2

𝐀𝐀𝐀𝐀 ⇒ 𝑓𝑓 𝑥𝑥0 − 𝑓𝑓low ≥ �
𝑘𝑘=0

𝐾𝐾

𝑓𝑓 𝑥𝑥𝑘𝑘 − 𝑓𝑓 𝑥𝑥𝑘𝑘+1 >
𝜀𝜀2

2𝐿𝐿
𝐾𝐾 + 1
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Lipschitz gradients
on complete manifolds
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𝑥𝑥

Exp𝑥𝑥 𝑠𝑠

𝑠𝑠

Im
age: D.K. W

ise, IOP Science

Using parallel transport and exponential map:

grad𝑓𝑓 𝑦𝑦 − P𝑦𝑦←𝑥𝑥grad𝑓𝑓 𝑥𝑥 ≤ 𝐿𝐿 ⋅ dist 𝑥𝑥,𝑦𝑦 ,

P𝑦𝑦←𝑥𝑥 is parallel transport along 𝛾𝛾 𝑡𝑡 = Exp𝑥𝑥 𝑡𝑡𝑠𝑠
from 𝑥𝑥 = 𝛾𝛾(0) to 𝑦𝑦 = 𝛾𝛾 1 = Exp𝑥𝑥 𝑠𝑠 .

Already used for optimization in 1998 (da Cruz de Neto)
𝑓𝑓 Exp𝑥𝑥 𝑠𝑠 − 𝑓𝑓 𝑥𝑥 − 𝑠𝑠, grad𝑓𝑓 𝑥𝑥 ≤ 𝐿𝐿

2
𝑠𝑠 2

RGD: 𝑥𝑥𝑘𝑘+1 = Exp𝑥𝑥𝑘𝑘 − 1
𝐿𝐿

grad𝑓𝑓(𝑥𝑥𝑘𝑘)



Lipschitz gradients
on complete manifolds

15

𝑥𝑥

Exp𝑥𝑥 𝑠𝑠

𝑠𝑠

Im
age: D.K. W

ise, IOP Science

Using parallel transport and exponential map:

grad𝑓𝑓 𝑦𝑦 − P𝑦𝑦←𝑥𝑥grad𝑓𝑓 𝑥𝑥 ≤ 𝐿𝐿 ⋅ 𝑠𝑠 ,

P𝑦𝑦←𝑥𝑥 is parallel transport along 𝛾𝛾 𝑡𝑡 = Exp𝑥𝑥 𝑡𝑡𝑠𝑠
from 𝑥𝑥 = 𝛾𝛾(0) to 𝑦𝑦 = 𝛾𝛾 1 = Exp𝑥𝑥 𝑠𝑠 .

Implies the key quadratic bound:
𝑓𝑓 Exp𝑥𝑥 𝑠𝑠 − 𝑓𝑓 𝑥𝑥 − 𝑠𝑠, grad𝑓𝑓 𝑥𝑥 ≤ 𝐿𝐿

2
𝑠𝑠 2

RGD: 𝑥𝑥𝑘𝑘+1 = Exp𝑥𝑥𝑘𝑘 − 1
𝐿𝐿

grad𝑓𝑓(𝑥𝑥𝑘𝑘)



Gradient descent on ℳ
A1 𝑓𝑓 𝑥𝑥 ≥ 𝑓𝑓low for all 𝑥𝑥 ∈ ℳ
A2 𝑓𝑓 Exp𝑥𝑥 𝑠𝑠 − 𝑓𝑓 𝑥𝑥 − 𝑠𝑠, grad𝑓𝑓 𝑥𝑥 ≤ 𝐿𝐿

2
𝑠𝑠 2

Algorithm: 𝑥𝑥𝑘𝑘+1 = Exp𝑥𝑥𝑘𝑘 − 1
𝐿𝐿

grad𝑓𝑓(𝑥𝑥𝑘𝑘)

Complexity: grad𝑓𝑓(𝑥𝑥𝐾𝐾) ≤ 𝜀𝜀 with 𝐾𝐾 ≤ 2𝐿𝐿 𝑓𝑓 𝑥𝑥0 − 𝑓𝑓low
1
𝜀𝜀2

A2 ⇒ 𝑓𝑓 𝑥𝑥𝑘𝑘+1 − 𝑓𝑓 𝑥𝑥𝑘𝑘 +
1
𝐿𝐿

grad𝑓𝑓 𝑥𝑥𝑘𝑘 2 ≤
1
2𝐿𝐿

grad𝑓𝑓(𝑥𝑥𝑘𝑘) 2

⇒ 𝑓𝑓 𝑥𝑥𝑘𝑘 − 𝑓𝑓 𝑥𝑥𝑘𝑘+1 ≥
1
2𝐿𝐿

grad𝑓𝑓 𝑥𝑥𝑘𝑘 2

𝐀𝐀𝐀𝐀 ⇒ 𝑓𝑓 𝑥𝑥0 − 𝑓𝑓low ≥ �
𝑘𝑘=0

𝐾𝐾

𝑓𝑓 𝑥𝑥𝑘𝑘 − 𝑓𝑓 𝑥𝑥𝑘𝑘+1 >
𝜀𝜀2

2𝐿𝐿
𝐾𝐾 + 1

16

𝑥𝑥

Exp𝑥𝑥 𝑠𝑠
𝑠𝑠



A1 𝑓𝑓 𝑥𝑥 ≥ 𝑓𝑓low for all 𝑥𝑥 ∈ ℳ
A2   grad𝑓𝑓 𝑦𝑦 − P𝑦𝑦←𝑥𝑥grad𝑓𝑓 𝑥𝑥 ≤ 𝐿𝐿 ⋅ dist 𝑥𝑥,𝑦𝑦

Algorithm: 𝑥𝑥𝑘𝑘+1 = Exp𝑥𝑥𝑘𝑘 − 1
𝐿𝐿

grad𝑓𝑓(𝑥𝑥𝑘𝑘)

⇒ grad𝑓𝑓(𝑥𝑥𝐾𝐾) ≤ 𝜀𝜀 with 𝐾𝐾 ≤ 2𝐿𝐿 𝑓𝑓 𝑥𝑥0 − 𝑓𝑓low
1
𝜀𝜀2

Same as in 𝐑𝐑𝑛𝑛, where it is tight and optimal.

In particular, it is dimension free and curvature free!
17

Gradient descent on ℳ



Second-order target
grad𝑓𝑓(𝑥𝑥) ≤ 𝜀𝜀, 𝜆𝜆min Hess𝑓𝑓 𝑥𝑥 ≥ − 𝜀𝜀

Assume Lipschitz continuous Riemannian Hessian.

Implies Riemannian versions of the usual inequalities.

Riemannian trust regions: 𝑂𝑂 𝜀𝜀−2.5
With Absil and Cartis, arXiv:1605.08101

Riemannian cubic regularization: 𝑂𝑂 𝜀𝜀−1.5
With Agarwal, Bullins and Cartis, arXiv:1806.00065; See also Zhang and Zhang, arXiv:1805.05565

These complexities also dimension and curvature free.
Cubic regularization is also optimal in 𝐑𝐑𝑛𝑛.
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What is the role of curvature so far?

In 𝐑𝐑𝑛𝑛, GD and ARC are optimal under Lipschitz.

Same upper bounds on manifolds.

Thus, curvature does not hurt in those cases.

Might it help? What about other classes/algos?

Do Lipschitz constants hide curvature?
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For more sophisticated algorithms, 
known bounds suffer from curvature
Several recent papers study advanced algorithms for, 
e.g., Hessian-free saddle escapes and acceleration.

Their analyses in 𝐑𝐑𝑛𝑛 use Lipschitzness in more ways 
than the simple inequalities we used earlier.

Proof techniques often involve triangles on 
manifolds to track iterates: curvature comes up.
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Does curvature affect Lipschitz cnsts?
Here are two possible ways to address this.
Consider 𝑓𝑓:𝐑𝐑𝑛𝑛 → 𝐑𝐑 with Lipschitz gradient:

1. Restrict to a Riemannian submanifold ℳ ⊂ 𝐑𝐑𝑛𝑛.
Constant 𝐿𝐿 is affected by extrinsic curvature.

2. Deform 𝐑𝐑𝑛𝑛 into a Riemannian manifold.
Derivative of metric does affect 𝐿𝐿,
but link with curvature is indirect.

Case in point: one-dimensional manifolds have no
intrinsic curvature, yet see both effects.
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manopt.org

With Mishra, Absil & Sepulchre
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pymanopt.org

Lead by Townsend, Koep, Weichwald

Lead by Ronny Bergmann

manoptjl.org
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RSVRG (Zhang, Reddi & Sra 2016)
SGD with averaging (Tripuraneni, Flammarion, Bach & Jordan 2018)
Perturbed gradient descent (Sun, Flammarion & Fazel 2019)
More stochastic methods (Kasai, Sato & Mishra 2016/17; Zhang et al. 2016)
Geodesically convex optimization (Zhang & Sra 2016)

Also with (steps toward) acceleration (Zhang & Sra; Alimisis et al. 2020)

Riemannian Lipschitz, with Riemannian curvature in bounds

Gradient descent (Bento, Ferreira & Melo 2017)
Trust-regions (B., Absil & Cartis 2018)
Adaptive regularization with cubics (Agarwal, B., Bullins & Cartis 2019)
R-Spider (stochastic) (Zhang, Zhang & Sra 2018)
Frank-Wolfe (Weber & Sra 2017)

Riemannian Lipschitz, no Riemannian curvature in bounds

Gradient descent (B., Absil & Cartis 2018)
Trust-regions
Adaptive regulization with cubics
Perturbed gradient descent (Criscitiello & Boumal, 2019)

Pullback Lipschitz, no curvature in bounds, but maybe hidden
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