Discrete curve fitting on manifolds

Nicolas Boumal

Advisors: Pierre-Antoine Absil and Vincent Blondel

Université catholique de Louvain

March 2011

The regression problem in \mathbb{R}^2 A balance between fitting and smoothness

The regression problem in \mathbb{R}^2 A balance between fitting and smoothness

Each data point p_i corresponds to a fixed time t_i .

The regression problem in \mathbb{R}^2 A balance between fitting and smoothness

The regression problem in \mathbb{R}^2 A balance between fitting and smoothness

The regression problem in \mathbb{R}^2 A balance between fitting and smoothness

The regression problem in \mathbb{R}^2 A balance between fitting and smoothness

Regression is about denoising and filling the gaps.

The regression problem in \mathbb{R}^2 can be seen as an optimization problem

Minimize:

$$\hat{E}(\gamma) = \sum_{i=1}^{N} \|p_i - \gamma(t_i)\|^2 + \lambda \int_{t_1}^{t_N} \|\dot{\gamma}(t)\|^2 dt + \mu \int_{t_1}^{t_N} \|\ddot{\gamma}(t)\|^2 dt$$
Penalty on velocity
Penalty on acceleration
Penalty on velocity
Penalty on acceleration

 λ and $\mu \ (\geq 0)$ balance fitting VS smoothness.

Minimize over some curve space $\hat{\Gamma}:\,\dim\hat{\Gamma}$ may be infinite.

We discretize the curves γ

hence reverting to finite dimensional optimization

We discretize the curves γ

hence reverting to finite dimensional optimization

Each point γ_i corresponds to a fixed time τ_i $\Gamma = \mathbb{R}^n \times \cdots \times \mathbb{R}^n \equiv \mathbb{R}^{N_d \times n}$

We thus need a new objective E defined over the new curve space Γ

$$E(\gamma) = \sum_{i=1}^{N} \|p_i - \gamma(t_i)\|^2 \qquad \int_{t_1}^{t_N} \|\dot{\gamma}(t)\|^2 dt \qquad \int_{t_1}^{t_N} \|\ddot{\gamma}(t)\|^2 dt$$

$$E(\gamma) = \sum_{i=1}^{N} \|p_i - \gamma_{s_i}\|^2 + \lambda \qquad \sum_{i=1}^{N_d} \alpha_i \|v_i\|^2 \qquad + \mu \qquad \sum_{i=1}^{N_d} \beta_i \|a_i\|^2$$

What if the data lies on a manifold?

Manifolds are smoothly "curved" spaces.

Simple toy example: the sphere \mathbb{S}^2 in \mathbb{R}^3

More exciting manifolds discussed in this work: \mathbb{P}^n_+ and SO(n).

We need a few concepts from Riemannian geometry to define discrete regression on \mathbb{S}^2

Redefine E over $\Gamma = \mathbb{S}^2 \times \cdots \times \mathbb{S}^2$:

$$E(\gamma) = \sum_{i=1}^{N} \|p_i - \gamma_{s_i}\|^2 + \lambda \sum_{i=1}^{N_d} \alpha_i \|v_i\|^2 + \mu \sum_{i=1}^{N_d} \beta_i \|a_i\|^2$$

We need a few concepts from Riemannian geometry to define discrete regression on \mathbb{S}^2

Redefine E over $\Gamma = \mathbb{S}^2 \times \cdots \times \mathbb{S}^2$:

$$E(\gamma) = \sum_{i=1}^{N} \|p_i - \gamma_{s_i}\|^2 + \lambda \sum_{i=1}^{N_d} \alpha_i \|v_i\|^2 + \mu \sum_{i=1}^{N_d} \beta_i \|a_i\|^2$$

$$\downarrow$$

$$\sum_{i=1}^{N} \operatorname{dist}^2(p_i, \gamma_{s_i})$$

We need a few concepts from Riemannian geometry to define discrete regression on \mathbb{S}^2

Redefine E over $\Gamma = \mathbb{S}^2 \times \cdots \times \mathbb{S}^2$:

$$E(\gamma) = \sum_{i=1}^{N} \|p_i - \gamma_{s_i}\|^2 + \lambda \sum_{i=1}^{N_d} \alpha_i \|v_i\|^2 + \mu \sum_{i=1}^{N_d} \beta_i \|a_i\|^2$$

$$\downarrow$$

$$\sum_{i=1}^{N} \operatorname{dist}^2(p_i, \gamma_{s_i})$$

Finite differences are linear combinations but \mathbb{S}^2 is not a vector space :(

The linear combination

$$a_i = \frac{\gamma_{i+1} - 2\gamma_i + \gamma_{i-1}}{\Delta \tau^2}$$

Finite differences are linear combinations but \mathbb{S}^2 is not a vector space :(

The linear combination

$$a_i = \frac{\gamma_{i+1} - 2\gamma_i + \gamma_{i-1}}{\Delta \tau^2}$$

can be rewritten like this:

$$a_i = \frac{(\gamma_{i+1} - \gamma_i) + (\gamma_{i-1} - \gamma_i)}{\Delta \tau^2}.$$

Finite differences are linear combinations but \mathbb{S}^2 is not a vector space :(

The linear combination

$$a_i = \frac{\gamma_{i+1} - 2\gamma_i + \gamma_{i-1}}{\Delta \tau^2}$$

can be rewritten like this:

$$a_i = \frac{(\gamma_{i+1} - \gamma_i) + (\gamma_{i-1} - \gamma_i)}{\Delta \tau^2}.$$

Now, we can interpret the terms:

 $\gamma_{i+1} - \gamma_i$ is a vector rooted at γ_i and pointing toward γ_{i+1}

Logarithms on manifolds generalize differences

We use them to define geometric finite differences

 $\text{Log}_{a}(b)$ is a vector rooted at a, in the tangent space to \mathbb{S}^{2} at a, pointing toward b. Furthermore, $\|\text{Log}_{a}(b)\| = \text{dist}(a, b)$.

Logarithms on manifolds generalize differences

We use them to define geometric finite differences

 $\text{Log}_{a}(b)$ is a vector rooted at a, in the tangent space to \mathbb{S}^{2} at a, pointing toward b. Furthermore, $\|\text{Log}_{a}(b)\| = \text{dist}(a, b)$.

b-a is replaced by $\operatorname{Log}_{a}(b)$

Hence:

$$v_{i} = \frac{\operatorname{Log}_{\gamma_{i}}(\gamma_{i+1})}{\Delta \tau} \qquad a_{i} = \frac{\operatorname{Log}_{\gamma_{i}}(\gamma_{i+1}) + \operatorname{Log}_{\gamma_{i}}(\gamma_{i-1})}{\Delta \tau^{2}}$$

We now have a proper objective for manifolds

Minimize over $\Gamma = \mathbb{S}^2 \times \cdots \times \mathbb{S}^2$, a finite dimensional manifold.

The constraint $\gamma \in \Gamma$ is tough for standard software.

To minimize E, we exploit the geometry by generalizing unconstrained descent methods

Geometric steepest descent step:

- **1** Compute the steepest descent direction;
- 2 Choose a step length along the corresponding geodesic;
- 3 Make the step while remaining on the manifold.

1 We defined the discrete regression problem in \mathbb{R}^n ;

1 We defined the discrete regression problem in \mathbb{R}^n ;

2 Then generalized it to manifolds as an optimization problem on Γ ;

1 We defined the discrete regression problem in \mathbb{R}^n ;

2 Then generalized it to manifolds as an optimization problem on Γ ;

3 And described an optimization scheme on manifolds.

Example of convergence on \mathbb{S}^2

with geometric non-linear CG and iterative refinement

Example of convergence on \mathbb{S}^2

with geometric non-linear CG and iterative refinement

What's so hard about it?

The main constraint: tractability of the manifold.

It can be slow...

We are currently trying second order methods.

... or even impossible.

Our method is well-defined on any Riemannian manifold, but is only practical on the gentle ones.

What's next?

Applications?