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Each data point pi corresponds to a fixed time ti.
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A balance between fitting and smoothness
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Regression is about denoising and filling the gaps.
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The regression problem in R
2

can be seen as an optimization problem

Minimize:

Ê(γ) =

Penalty on misfit

N
∑

i=1

‖pi − γ(ti)‖
2 +λ

Penalty on velocity
∫ tN

t1

‖γ̇(t)‖2dt + µ

Penalty on acceleration
∫ tN

t1

‖γ̈(t)‖2dt

λ and µ (≥ 0) balance fitting VS smoothness.

Minimize over some curve space Γ̂: dim Γ̂ may be infinite.
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We discretize the curves γ
hence reverting to finite dimensional optimization
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We discretize the curves γ
hence reverting to finite dimensional optimization
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Each point γi corresponds to a fixed time τi
Γ = R

n × · · · × R
n ≡ R

Nd×n
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We thus need a new objective E
defined over the new curve space Γ

E(γ) =

N
∑

i=1

‖pi − γ(ti)‖
2

⇓

N
∑

i=1

‖pi − γsi‖
2 +λ

∫ tN

t1

‖γ̇(t)‖2dt

⇓

Nd
∑

i=1

αi‖vi‖
2 +µ

∫ tN

t1

‖γ̈(t)‖2dt

⇓

Nd
∑

i=1

βi‖ai‖
2
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What if the data lies on a manifold?

Manifolds are smoothly “curved” spaces.

Simple toy example: the sphere S
2 in R

3

More exciting manifolds discussed in this work: Pn
+ and SO(n).
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The regression problem on S
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We need a few concepts from Riemannian geometry
to define discrete regression on S

2

Redefine E over Γ = S
2 × · · · × S

2:

E(γ) =
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∑
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Finite differences are linear combinations
but S2 is not a vector space :(

The linear combination

ai =
γi+1 − 2γi + γi−1

∆τ2
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Finite differences are linear combinations
but S2 is not a vector space :(

The linear combination

ai =
γi+1 − 2γi + γi−1

∆τ2

can be rewritten like this:

ai =
(γi+1 − γi) + (γi−1 − γi)

∆τ2
.

Now, we can interpret the terms:

γi+1 − γi is a vector rooted at γi and pointing toward γi+1
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Logarithms on manifolds generalize differences
We use them to define geometric finite differences

Loga (b) is a vector rooted at a, in the tangent space to S
2 at a, pointing

toward b. Furthermore, ‖Loga (b) ‖ = dist (a, b).
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Logarithms on manifolds generalize differences
We use them to define geometric finite differences

Loga (b) is a vector rooted at a, in the tangent space to S
2 at a, pointing

toward b. Furthermore, ‖Loga (b) ‖ = dist (a, b).

b− a is replaced by Loga (b)

Hence:

vi =
Logγi (γi+1)

∆τ
ai =

Logγi (γi+1) + Logγi (γi−1)

∆τ2
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We now have a proper objective for manifolds

E(γ) =

Penalty on misfit

N
∑

i=1

dist2 (pi, γsi) +λ

Penalty on velocity

Nd−1
∑

i=1

αi

∥

∥

∥

∥

Logγi (γi+1)

∆τ

∥

∥

∥

∥

2

+ µ

Nd−1
∑

i=2

βi

∥

∥

∥

∥

Logγi (γi+1) + Logγi (γi−1)

∆τ2

∥

∥

∥

∥

2

Penalty on acceleration

Minimize over Γ = S
2 × · · · × S

2, a finite dimensional manifold.

The constraint γ ∈ Γ is tough for standard software.
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To minimize E, we exploit the geometry
by generalizing unconstrained descent methods

Geometric steepest descent step:

1 Compute the steepest descent direction;

2 Choose a step length along the corresponding geodesic;

3 Make the step while remaining on the manifold.
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Let’s recap’

1 We defined the discrete regression problem in R
n;
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Let’s recap’

1 We defined the discrete regression problem in R
n;

2 Then generalized it to manifolds as an optimization problem on Γ;

3 And described an optimization scheme on manifolds.
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Example of convergence on S
2

with geometric non-linear CG and iterative refinement
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Example of convergence on S
2

with geometric non-linear CG and iterative refinement
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What’s so hard about it?
The main constraint: tractability of the manifold.

It can be slow. . .

We are currently trying second order methods.

. . . or even impossible.

Our method is well-defined on any Riemannian manifold,
but is only practical on the gentle ones.
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What’s next?

Applications?
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