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The regression problem in R?

A balance between fitting and smoothness

Regression is about denoising and filling the gaps.



The regression problem in R?

can be seen as an optimization problem

Minimize:

Penalty on misfit Penalty on velocity Penalty on acceleration
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A and p (> 0) balance fitting VS smoothness.

Minimize over some curve space I': dimI' may be infinite.
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hence reverting to finite dimensional optimization
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We discretize the curves ~

hence reverting to finite dimensional optimization
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We thus need a new objective F

defined over the new curve space I
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What if the data lies on a manifold?

Manifolds are smoothly “curved” spaces.

Simple toy example: the sphere S? in R?

More exciting manifolds discussed in this work: P} and SO(n).
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The regression problem on S?
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We need a few concepts from Riemannian geometry

to define discrete regression on S?

Redefine E over ' = §2 x --- x §%:
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Finite differences are linear combinations

but S is not a vector space :(

The linear combination

L Yl — 2% i
4= AT?

12



Finite differences are linear combinations

but S is not a vector space :(

The linear combination

L Yl — 2% i
4= AT?

can be rewritten like this:

(vir1 — %) + (vie1 — )
AT?

a; =

12



Finite differences are linear combinations

but S? is not a vector space :(

The linear combination

L Yl — 2% i
4= AT?

can be rewritten like this:

(vir1 — %) + (vie1 — )
AT?

a; = .

Now, we can interpret the terms:

Yi+1 — Vi IS a vector rooted at v; and pointing toward ;41



Logarithms on manifolds generalize differences

We use them to define geometric finite differences

Log, (b) is a vector rooted at a, in the tangent space to S? at a, pointing
toward b. Furthermore, || Log, (b) || = dist (a, b).
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Logarithms on manifolds generalize differences

We use them to define geometric finite differences

Log, (b) is a vector rooted at a, in the tangent space to S? at a, pointing
toward b. Furthermore, || Log, (b) || = dist (a, b).

b—a is replaced by Log, (b)

Hence:

v — Log,, (vi+1) v — Log,, (Vi+1) + Log,, (vi-1)
T - A T T
AT AT2
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We now have a proper objective for manifolds

Penalty on misfit Penalty on velocity
Ng—1
Og ’YZ-H)
i
E dist? (PisYs;) +A E 17
Ng—1 2

Log,, (vi+1) + Log,, (7i-1)
AT2

Penalty on acceleration

+ Zﬂz

Minimize over ' = §% x - -- x S2, a finite dimensional manifold.

The constraint v € T" is tough for standard software.
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To minimize E, we exploit the geometry

by generalizing unconstrained descent methods

Geometric steepest descent step:

Compute the steepest descent direction;

Choose a step length along the corresponding geodesic;

Make the step while remaining on the manifold.
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Let's recap’

We defined the discrete regression problem in R™;
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Let's recap’

We defined the discrete regression problem in R™;

Then generalized it to manifolds as an optimization problem on T’

And described an optimization scheme on manifolds.
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Example of convergence on S?

with geometric non-linear CG and iterative refinement
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with geometric non-linear CG and iterative refinement
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What's so hard about it?

The main constraint: tractability of the manifold.

It can be slow. ..

We are currently trying second order methods.

...or even impossible.

Our method is well-defined on any Riemannian manifold,
but is only practical on the gentle ones.
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What's next?

Applications?
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