
Riemannian trust regions with finite-difference
Hessian approximations are globally convergent

Nicolas Boumal

Inria & D.I., UMR 8548, Ecole Normale Supérieure, Paris, France,
nicolasboumal@gmail.com

Abstract. The Riemannian trust-region algorithm (RTR) is designed to
optimize differentiable cost functions on Riemannian manifolds. It pro-
ceeds by iteratively optimizing local models of the cost function. When
these models are exact up to second order, RTR boasts a quadratic con-
vergence rate to critical points. In practice, building such models requires
computing the Riemannian Hessian, which may be challenging. A simple
idea to alleviate this difficulty is to approximate the Hessian using finite
differences of the gradient. Unfortunately, this is a nonlinear approxima-
tion, which breaks the known convergence results for RTR.

We propose RTR-FD: a modification of RTR which retains global
convergence when the Hessian is approximated using finite differences.
Importantly, RTR-FD reduces gracefully to RTR if a linear approxima-
tion is used. This algorithm is available in the Manopt toolbox.

In the proceedings of Geometric Science of Information, GSI 2015.

1 Introduction

The Riemannian trust-region method (RTR) is a popular algorithm designed
to minimize differentiable cost functions f over Riemannian manifoldsM [1, 2].
That is, RTR attempts to compute minx∈M f(x). Starting with a given initial
guess x0 ∈M, it iteratively reduces the cost f(xk) along a sequence x0, x1, . . .

Under conditions we explicit later, the sequences of iterates produced by
RTR converge to critical points regardless of the initial guess (this is called
global convergence). A critical point x ∈ M is such that gradf(x) = 0, where
gradf(x) is the Riemannian gradient of f at x. Since all global optimizers are
critical points, this property is highly desirable.

RTR proceeds as follows. At the current iterate xk ∈ M, it produces a
candidate next iterate, x+k ∈ M, by (approximately) minimizing a local model
mk of f in a neighborhood of xk, called a trust region—because this is where
we trust the model. This procedure always reduces the model cost mk, but of
course, the aim is to reduce the actual cost f . RTR then computes the actual cost
improvement and decides to accept or reject the proposed step x+k accordingly.
Furthermore, depending on how accurately the actual cost improvement was
predicted by the model, the size ∆k of the trust region is reduced, increased or
left unchanged for the next iteration. See Algorithm 1.



To be precise, the inner problem at iteration k takes the following form:

min
η∈Txk

M,‖η‖
P
−1
k
≤∆k

mk(η) := f(xk) + 〈η, gradf(xk)〉xk
+

1

2
〈η,Hk[η]〉xk

, (1)

where TxM is the tangent space toM at x, 〈·, ·〉x is the Riemannian metric on
TxM, Hk : Txk

M → Txk
M is an operator (conditions on Hk are the topic of

this paper), Pk : Txk
M→ Txk

M is a symmetric positive definite preconditioner,
‖η‖2

P−1
k

:=
〈
η, P−1k η

〉
xk

defines a norm and ∆k is the size of the trust region at

iteration k. Ideally, Pk is a cheap, positive approximation of the inverse of the
Hessian of f at xk. For a first read, it is safe to assume Pk = Id (identity).

An approximate solution ηk to the inner problem is computed, and the can-
didate next iterate is obtained as x+k = Retrxk

ηk, where Retrx : TxM→M is a
retraction onM [2, def. 4.1.1]: a relaxation of the differential geometric notion of
exponential. For all x, it satisfies Retrx(0) = x, and the derivative of t 7→ Retrxtη
at t = 0 equals η, for all tangent η. Furthermore, Retrxη is smooth in both x and
η. If M is a Euclidean space such as Rn, the classical choice is Retrxη = x+ η.

A remarkable feature of RTR is that it guarantees global convergence under
very lax conditions on both the Hk’s and how well (1) is solved [2, thm. 7.4.4].
Essentially two things are required: (a) that the Hk’s be uniformly bounded,
symmetric linear operators, and (b) that the approximate model minimizers ηk
produce at least the following decrease in the model cost at each iteration [2,
eq. (7.14)]:

mk(0)−mk(ηk) ≥ c1‖gradf(xk)‖xk
min (∆k, c2‖gradf(xk)‖xk

) , (2)

where ‖η‖2xk
:= 〈η, η〉xk

and c1, c2 > 0 are constants.
Then, two things are known: (a) if ηk is produced by the Steihaug-Toint

truncated conjugate-gradients algorithm (tCG, Algorithm 2), sufficient decrease
is attained; and (b) still using tCG, if Hk is a sufficiently good approximation of
the Riemannian Hessian of f at xk, RTR achieves a superlinear local convergence
rate [2, thm. 7.4.11], i.e., close to an isolated local minimizer, convergence is fast.

As computing the Riemannian Hessian can be cumbersome (at best), there
is a need for good, generic approximations of it. Linear approximations based
on finite differences of the gradient have been proposed [2, § 8.2.1], but they are
impractical, since they require the computation of a full operator Hk expanded in
a basis of Txk

M: this is an issue if the dimension ofM is large or if it is difficult
to define natural bases of the tangent spaces, that is, in most cases. Alternatives
based on transporting an approximate Hessian from tangent space to tangent
space may constitute a good solution, especially in low-dimension, even if they
are arguably delicate to implement and typically require extra memory [6, 7].

On the other hand, it is quite natural to propose a nonlinear approximation
of the Hessian at xk based on finite differences, as HFD

k [0] = 0 and

HFD
k [η] =

Transpxk←ygradf (y)− gradf(xk)

c
, with

{
c = α/‖η‖xk

,

y = Retrxk
cη,

(3)



where α > 0 is a small constant (more on this later) and Transpx←y is a trans-
porter, i.e., a linear operator from TyM to TxM whose dependence on x and y
is jointly continuous and such that Transpx←x = Id for all x.1 Transporters al-
low comparing vectors in different tangent spaces. In this respect, they are loose
relaxations of the concept of parallel transport in differential geometry. For M
a Euclidean space, the classical choice is Transpx←y = Id since TxM≡ TyM.

HFD
k is cheap and simple to compute: it essentially requires a single extra

gradient evaluation. Unfortunately, because it is nonlinear, the known global
convergence theory for RTR does not apply as is. In this paper, we show how
a tiny modification to the tCG algorithm makes it possible to retain global
convergence even if Hk is only radially linear, by which we mean:

∀η ∈ Txk
M,∀a ≥ 0, Hk[aη] = aHk[η]. (4)

Since HFD
k is radially linear, this is a good first step. We then show that HFD

k sat-
isfies the other important condition, namely, uniform boundedness, under mild
extra assumptions. Lastly, we note that the modification of tCG is innocuous if
Hk is linear, so that it is safe to use the modified version for all purposes.

We name RTR with the modified tCG algorithm and the finite-difference Hes-
sian approximation Hk := HFD

k the RTR-FD algorithm. The Manopt toolbox [4]
implements RTR-FD as a default fall-back in case the user does not specify the
Hessian. Experience shows it performs well in practice (see for example [3]).

2 Global convergence with bounded, radially linear Hk’s

LetM be a finite-dimensional Riemannian manifold and f : M→ R be a scalar
field on M. We use the notation dist(x, y) to denote the Riemannian distance
between two points x and y on M. The injectivity radius of M is defined as

i(M) := inf
x∈M

sup{ε > 0 : Expx|{η∈TxM:‖η‖x<ε} is a diffeomorphism},

where Expx : TxM → M is the (geometric) exponential map at x; loosely,
the operator that generates geodesics. In other words, for all x, y such that
dist(x, y) < i(M), there exists a unique minimizing geodesic joining x to y.
In particular, i(Rn) = ∞. For such close points, there is a unique, privileged
transporter PTranspx←y, called the parallel transporter [2, p. 148]. Assuming
i(M) > 0, we say f is Lipschitz continuously differentiable [2, def. 7.4.3] if it is
differentiable and there exists β1 such that, for all x, y with dist(x, y) < i(M),

‖PTranspx←ygradf(y)− gradf(x)‖x ≤ β1dist(x, y). (5)

We make the following assumptions. They differ from the standard assump-
tions in only two ways: (a) the Hk’s are allowed to be radially linear rather
than linear, which requires a slight modification of the tCG algorithm, but no
modification of the proofs; and (b) preconditioners are explicitly allowed.

1 Transporters [7, § 4.3] are mostly equivalent to vector transports [2, def. 8.1.1].



Assumption 1 M has a positive injectivity radius, i(M) > 0.

Assumption 2 f is Lipschitz continuously differentiable (5) and f ◦ Retr is
radially Lipschitz continuously differentiable [2, def. 7.4.1].

Assumption 3 f is bounded below, that is, infx∈M f(x) > −∞.

Assumption 4 The Hk’s are radially linear (4) and bounded, i.e., there exists
β <∞ such that ‖Hk‖op := max {‖Hk[η]‖xk

: η ∈ Txk
M, ‖η‖xk

= 1} ≤ β, ∀k.

Assumption 5 There exist βP , βP−1 such that, for all k, ‖Pk‖op ≤ βP < ∞
and 1/‖P−1k ‖op ≥ βP−1 > 0.

Assumption 6 There exist µ, δµ > 0 such that for all x ∈ M and for all
η ∈ TxM with ‖η‖x ≤ δµ, the retraction satisfies: dist(x,Retrxη) ≤ ‖η‖x/µ.

Theorem 1. Under assumptions 1–5, the sequence x0, x1, x2, . . . generated by
the modified RTR-tCG algorithm (Algs 1–2) satisfies: lim inf

k→∞
‖gradf(xk)‖xk

= 0.

Proof. This is essentially Theorem 7.4.2 in [2], with Hk’s allowed to be radially
linear rather than linear, and with the possibility to use a preconditioner Pk.
Without preconditioner (Pk = Id), the proof in [2] turns out to apply verbatim.
In the more general case, it can be verified that the first step η1 computed by
the tCG algorithm at iteration k is the preconditioned Cauchy step:

η1 = argmin
η=−τPkgradf(xk)

mk(η), subject to: ‖η‖P−1
k
≤ ∆k and τ > 0. (6)

To verify this, execute the first step of tCG by hand (it is oblivious to the fact
that Hk is only radially linear), and compare the results to the solution of (6).
The latter is simple to solve since it is a quadratic in τ , to be minimized on an
interval. Using the analytic expression for η1, it can be seen that

mk(0)−mk(η1) ≥ 1

2
‖gradf(xk)‖Pk

min

(
∆k,

‖gradf(xk)‖Pk

‖P 1/2
k ◦Hk ◦ P

1/2
k ‖op

)
,

where ‖η‖2Pk
= 〈η, Pkη〉xk

. By submultiplicativity of the operator norm,

‖P 1/2
k ◦Hk ◦ P

1/2
k ‖op ≤ ‖Pk‖op ‖Hk‖op ≤ ββP .

Furthermore, ‖gradf(xk)‖Pk
≥ β1/2

P−1‖gradf(xk)‖xk
. Thus, the sufficient decrease

condition (2) is fulfilled by η1. If Hk is linear, then tCG guarantees mk(ηj+1) <
mk(ηj) [2, Prop. 7.3.2], so that if η1 is a sufficiently good approximate solution
to the inner problem (which it is), then certainly the solution tCG returns, ηk,
is too. For nonlinear Hk, this is not guaranteed anymore, hence the proposed
modified tCG, which ensures that, if ηj+1 is worse than ηj (as per the model),
then ηj is returned. The latter is at least as good as η1, hence (2) holds. ut

The proof that all accumulations points are critical points holds verbatim,
even though we allow the Hk’s to be merely radially linear [2, Thm. 7.4.4]:

Theorem 2. Under assumptions 1–6, the sequence x0, x1, x2, . . . generated by
the modified RTR-tCG algorithm (Algs 1–2) satisfies: limk→∞ gradf(xk) = 0.



3 HFD
k is bounded and radially linear

We now show that setting Hk := HFD
k (3) to approximate the Hessian of f using

finite differences fulfills Assumption 4, under these mild additional assumptions:

Assumption 7 There exist µ′, δµ′ > 0 such that, for all x, y with dist(x, y) ≤
δµ′ , the transporter satisfies ‖Transpx←y‖op ≤ µ′.

Assumption 8 There exist β2, δβ2
> 0 such that, for all x with f(x) ≤ f(x0)

and y with dist(x, y) ≤ δβ2
, it holds that ‖gradf(y)‖y ≤ β2.

Assumption 7 is inconsequential, since ideal transporters are close to isometries:
it would make little sense to violate it. Assumption 8 should be easily achieved,
given that f is already assumed Lipschitz continuously differentiable. These as-
sumptions allow to make the following statement:

Theorem 3. Under assumptions 1–3 and 5–8, with 0 < α < min(δµ, µδµ′ , µδβ2
),

the operators HFD
k satisfy Assumption 4, so that the sequence x0, x1, x2, . . . gen-

erated by RTR-FD satisfies:

lim
k→∞

gradf(xk) = 0.

Proof. It is clear that HFD
k is radially linear. Let us show that it is also uniformly

bounded. For all η ∈ Txk
M with ‖η‖xk

= 1 and y = Retrxk
(αη), Assumption 6

ensures that α < δµ implies dist(xk, y) ≤ α/µ < min(δµ′ , δβ2), so that:

‖HFD
k [η]‖xk

=
1

α

∥∥Transpxk←ygradf(y)− gradf(xk)
∥∥
xk

≤ 1

α

(∥∥Transpxk←y
∥∥
op
‖gradf(y)‖y + ‖gradf(xk)‖xk

)
≤ (1 + µ′)β2

α
=: β.

Note: The dependence on 1/α is likely artificial and might be removed. One
potential start is to argue that g(y) =

∥∥Transpx←y − PTranspx←y
∥∥
op

cannot

grow faster than cx · dist(x, y) for some constant cx (since g(x) = 0 and g is
continuous), and then to use Lipschitz continuous differentiablity of f . ut

Corollary 1. If M is a Euclidean space (for example, Rn), equipped with the
standard tools Retrxη = x+η and Transpx←y = Id, under assumptions 2, 3 and
5, the sequence x0, x1, x2, . . . generated by RTR-FD with α > 0 satisfies:

lim
k→∞

gradf(xk) = 0.

Proof. Assumptions 1 and 6 are clearly fulfilled, with i(M) = δµ =∞ and µ = 1.
Assumptions 7 and 8 are not necessary, since, by Assumption 2, for η 6= 0,

‖HFD
k [η]‖xk

/‖η‖xk
=

1

α
‖gradf(xk + cη)− gradf(xk)‖xk

≤ β1 =: β.

ut



Corollary 2. If M is a compact manifold and f is twice continuously differen-
tiable, under Assumption 5 and with the same constraint on α as in Theorem 3,
the sequence x0, x1, x2, . . . generated by RTR-FD satisfies: lim

k→∞
gradf(xk) = 0.

Proof. M compact implies assumptions 1, 6 and 7. f twice continuously differ-
entiable withM compact implies assumptions 2, 3 and 8. See [2, Cor. 7.4.6]. ut

4 A technical point for computational efficiency

Proposition 7.3.2 in [2] ensures that, provided the operator H is linear, then the
model cost strictly decreases at each iteration of tCG: m(ηj+1) < m(ηj). This
notably means that there is no need to track m(ηj). Allowing for nonlinear H’s,
this property is lost. The proposed fix (the modified tCG, Algorithm 2) tracks
the model cost and safely terminates if a violation (a non-decrease) is witnessed.

A direct implementation of the modified tCG algorithm evaluates the model
cost f(x)+

〈
ηj , gradf(x)

〉
x

+1/2
〈
ηj , H[ηj ]

〉
x

at each iteration. This is not advis-

able, because it requires computing H[ηj ] whereas only H[δj ] is readily available.
If H were linear, then it would hold that H[ηj+1] = H[ηj + cjδj ] = H[ηj ] +

cjH[δj ], with cj either equal to τj or to αj , as prescribed by the algorithm. This
suggests a recurrence to evaluate the model cost without requiring additional ap-
plications of H, which is what we use in practice. The sequence ζ0, ζ1, . . . defined
by ζ0 = 0 and ζj+1 = ζj + cjH[δj ] coincides with H[η0], H[η1], . . . when H is
linear. The model cost at ηj is evaluated as f(x)+

〈
ηj , gradf(x)

〉
x

+1/2
〈
ηj , ζj

〉
x
.

Of course, for nonlinear H, this does not correspond to the original model.
But the convergence result still holds if it corresponds to a model using H̃, where
the H̃’s are still radially linear and uniformly bounded.

Conceptually run tCG a first time as described above. Then, define H̃ such
that it is radially linear, satisfies H̃[ηj ] = ζj and H̃[δj ] = H[δj ], and coincides

with H otherwise. (H̃ is never constructed in practice; it merely serves the ar-
gument.) This is well defined as long as no two vectors among δ1, δ2, . . . , δlast
and η1, η2, . . . , ηlast are aligned on the same (positive) ray (δ0 and η1 are aligned
by construction, in a compatible fashion). We do not prove that this property
holds, but we note that it seems highly unlikely that it would not, in practi-
cal instances. Then, the operators H̃ remain uniformly bounded provided the
‖ζj‖/‖ηj‖’s are uniformly bounded. If so, RTR with the modified tCG behaves

exactly as if the models were defined using the H̃’s which satisfy Assumption 4,
with true evaluation of the model. This would ensure global convergence.

In the same spirit, the tCG algorithm requires computations of P−1-norms,
to ensure iterates remain in the trust region. Since the preconditioner is often
only available as a black box P , these P−1-norms are typically computed via re-
currences that only involve applying P—see [5, eqs.(7.5.5–7)]. These recurrences
make use of the fact that, for linear H, rj+1 is orthogonal to δ0, . . . , δj . This
may not be the case for nonlinear H, so that, in general, using these recurrences
may lead to iterates leaving the trust region. One possible fix is to modify the
recurrences so that they do not assume the aforementioned orthogonality, but
we refrain from doing so in practice, for it does not appear to affect performance.



Algorithm 1 RTR : preconditioned Riemannian trust-region method

1: Given: x0 ∈M, 0 < ∆0 ≤ ∆̄ and 0 < ρ′ < 1/4
2: Init: k = 0
3: repeat
4: ηk = tCG(xk,∆k, Hk, Pk) . solve inner problem (1) (approximately)
5: x+k = Retrxk (ηk) . candidate next iterate
6: ρ1 = f(xk)− f(x+k ) . actual improvement
7: ρ2 = mk(0)−mk(ηk) . model improvement
8: if ρ1/ρ2 < 1/4 then . if the model made a poor prediction
9: ∆k+1 = ∆k/4 . reduce the trust region radius

. if the model is good but the region is too small
10: else if ρ1/ρ2 > 3/4 and tCG hit the boundary then
11: ∆k+1 = min(2∆k, ∆̄) . enlarge the radius
12: else
13: ∆k+1 = ∆k

14: end if
15: if ρ1/ρ2 > ρ′ then . if the relative decrease is sufficient
16: xk+1 = x+k . accept the step
17: else . otherwise
18: xk+1 = xk . reject it
19: end if
20: k = k + 1
21: until a stopping criterion triggers

5 Conclusion

From extensive experience, it seems that RTR-FD achieves a superlinear local
convergence rate, which is expected since HFD

k is “close” to the true Hessian.
See for example [3]. Unfortunately, the existing local convergence analyses rely
deeply on the linearity of Hk. We do not expect that a simple modification
of the argument would suffice to establish superlinear convergence of RTR-FD.
A possible starting point in that direction would be work by Huang et al. on
Riemannian trust regions with approximate Hessians [6, 7].

Acknowledgment. The author thanks P.-A. Absil for numerous helpful discussions.

References

1. Absil, P.A., Baker, C.G., Gallivan, K.A.: Trust-region methods on Riemannian man-
ifolds. Foundations of Computational Mathematics 7(3), 303–330 (2007)

2. Absil, P.A., Mahony, R., Sepulchre, R.: Optimization Algorithms on Matrix Mani-
folds. Princeton University Press, Princeton, NJ (2008)

3. Boumal, N.: Interpolation and regression of rotation matrices. In: Nielsen, F., Bar-
baresco, F. (eds.) Geometric Science of Information, Lecture Notes in Computer
Science, vol. 8085, pp. 345–352. Springer Berlin Heidelberg (2013)

4. Boumal, N., Mishra, B., Absil, P.A., Sepulchre, R.: Manopt, a Matlab toolbox for
optimization on manifolds. Journal of Machine Learning Research 15, 1455–1459
(2014), http://www.manopt.org



Algorithm 2 tCG(x,∆,H, P ) : modified Steihaug-Toint truncated CG method.
It is obtained from the classical tCG by adding the highlighted instructions. See
Section 4 for details on how to evaluate m(η) and P−1-norms.

1: Given: x ∈M and ∆, θ, κ > 0, H,P : TxM→ TxM,
H radially linear (4), P symmetric positive definite.

2: Init: η0 = 0 ∈ TxM, r0 = gradf(x), z0 = P [r0], δ0 = −z0
3: for j = 0 . . .max inner iterations− 1 do
4: κj = 〈δj , H[δj ]〉x
5: αj = 〈zj , rj〉x /κj
6: if κj ≤ 0 or ‖ηj + αjδj‖P−1 ≥ ∆ then

. the model Hessian has negative curvature or TR exceeded:
7: Set τj to be the positive root of ‖ηj + τjδj‖2P−1 = ∆2

8: ηj+1 = ηj + τjδj . hit the boundary

9: if m(ηj+1) ≥ m(ηj) then . this never triggers if H is linear or j = 0
10: return ηj . ηj is sure to decrease the model cost
11: end if

12: return ηj+1

13: end if
14: ηj+1 = ηj + αjδj

15: if m(ηj+1) ≥ m(ηj) then . idem
16: return ηj

17: end if

18: rj+1 = rj + αjH[δj ]
19: if ‖rj+1‖x ≤ ‖r0‖x ·min(‖r0‖θx, κ) then
20: return ηj+1 . this approximate solution is good enough
21: end if
22: zj+1 = P [rj+1]
23: βj = 〈zj+1, rj+1〉x / 〈zj , rj〉x
24: δj+1 = −zj+1 + βjδj
25: end for
26: return ηlast

5. Conn, A., Gould, N., Toint, P.: Trust-region methods. MPS-SIAM Series on Opti-
mization, Society for Industrial and Applied Mathematics (2000)

6. Huang, W., Absil, P.A., Gallivan, K.: A Riemannian symmetric rank-one trust-
region method. Tech. Rep. UCL-INMA-2013.03, Université catholique de Louvain
(2013)

7. Huang, W., Gallivan, K., Absil, P.A.: A Broyden class of quasi-Newton methods for
Riemannian optimization. Tech. Rep. UCL-INMA-2014.01, Université catholique de
Louvain (2015)


