Fair in love with your next book

Let the booksellers of Gower Street help you find your perfect match.

Low-rank matrix completion: optimization on manifolds at work

Nicolas Boumal

Joint work with Pierre-Antoine Absil

Université catholique de Louvain

July 2011

Recommender systems tell you which items you might like based on a huge database of ratings

We record ratings of movies by the customers

One row per movie, one column per customer

We record ratings of movies by the customers

One row per movie, one column per customer

Most ratings are unknown. Our job is to complete X.

$$X = \begin{pmatrix} 1 & ? & 2 & ? & ? & 5 & ? & ? & ? & 5 & ? & ? & 2 & ? \\ 2 & ? & 2 & ? & ? & 4 & ? & ? & ? & 3 & 4 & ? & 5 & ? & ? & ? \\ 1 & ? & 5 & 2 & ? & 4 & ? & 4 & ? & ? & ? & 2 & ? & ? & ? \\ ? & 1 & ? & 3 & ? & ? & ? & 3 & ? & ? & 3 & ? & 2 & ? & 5 & 5 \\ 4 & 4 & ? & ? & ? & 5 & ? & ? & 1 & ? & ? & 1 & ? & 4 \end{pmatrix}$$

We could exploit similarities between customers to complete the matrix

In a global, automated, scalable way?

We assume that X has low-rank rHence, that ratings are inner products in a small space \mathbb{R}^r

Rationale: only a few factors influence our preferences

We map movies and customers to this r-D space without any human intervention

Toward a reasonable formulation

The optimal choice UW is an *m*-by-*n* matrix of rank *r* in best agreement with the $|\Omega|$ known entries of *X*

This is reasonable, but

$$\min_{U \in \mathbb{R}^{m \times r}, W \in \mathbb{R}^{r \times n}} \sum_{(i, j) \in \Omega} \left((U \times V) \right)$$

$$\sum_{(i,j)\in\Omega} \left((UW)_{ij} - X_{ij} \right)^2$$

This objective is invariant under invertible transformations.

This is reasonable, but

$$\min_{U \in \mathbb{R}^{m \times r}, W \in \mathbb{R}^{r \times n}} \sum_{(i,j) \in \Omega} \left((UW)_{ij} - X_{ij} \right)^2$$

This objective is invariant under invertible transformations.

The pair (U, W) is equivalent to $(UM, M^{-1}W)$, for any *r*-by-*r* invertible matrix M.

We would like to get rid of the invariance. Why?

• The search space $\mathbb{R}^{m \times r} \times \mathbb{R}^{r \times n}$ is bigger than it ought to be;

- Convergence theorems often assume isolated critical points;
- And it may prevent superlinear convergence rates altogether.

We would like to get rid of the invariance. Why?

• The search space $\mathbb{R}^{m \times r} \times \mathbb{R}^{r \times n}$ is bigger than it ought to be;

Convergence theorems often assume isolated critical points;

And it may prevent superlinear convergence rates altogether.

Also, 'cause we can.

$$\min_{U \in \mathbb{R}^{m \times r}, W \in \mathbb{R}^{r \times n}} \sum_{(i,j) \in \Omega} \left((UW)_{ij} - X_{ij} \right)^2$$

$$\min_{U \in \mathbb{R}^{m \times r}} \min_{W \in \mathbb{R}^{r \times n}} \sum_{(i,j) \in \Omega} \left((UW)_{ij} - X_{ij} \right)^2$$

$$\min_{U \in \mathbb{R}^{m \times r}} \min_{W \in \mathbb{R}^{r \times n}} \sum_{(i,j) \in \Omega} \left((UW)_{ij} - X_{ij} \right)^2$$

W is the solution of a simple least squares problem.

W is the solution of a simple least squares problem.

Step 2: identify the right space for the objective function

$$f(U) = \min_{W \in \mathbb{R}^{r \times n}} \sum_{(i,j) \in \Omega} \left((UW)_{ij} - X_{ij} \right)^2$$

For all invertible $M \in \mathbb{R}^{r \times r}$, f(U) = f(UM).

Step 2: identify the right space for the objective function

$$f(U) = \min_{W \in \mathbb{R}^{r \times n}} \sum_{(i,j) \in \Omega} \left((UW)_{ij} - X_{ij} \right)^2$$

For all invertible $M \in \mathbb{R}^{r \times r}$, f(U) = f(UM).

Hence, f is well defined over the set of equivalence classes [U]:

$$[U] = \{UM : M \in \mathbb{R}^{r \times r} \text{ is invertible}\}.$$

$[U] = \{UM : M \in \mathbb{R}^{r \times r} \text{ is invertible}\}.$

$$[U] = \{UM: M \in \mathbb{R}^{r \times r} \text{ is invertible}\}.$$

 They have the same column space.

The set of equivalence classes is the Grassmann manifold Gr(m, r)

 $[U] = \{UM: M \in \mathbb{R}^{r \times r} \text{ is invertible}\}.$ They have the same column space.

• Gr(m,r) is the set of *r*-dimensional subspaces of \mathbb{R}^m ;

It has a well studied smooth manifold structure.

How do you minimize $f([\boldsymbol{U}])$ over the Grassmann manifold?

We use a Riemannian trust-region method: GenRTR

Absil et al. (2007) generalized trust-region methods to manifolds.

GenRTR is numerically efficient and comes with proofs.

A few numerical tests

We compare seven algorithms

RTRMC is our method, with Hessian (2nd order) and without Hessian (1st order);

OptSpace by Keshavan and Oh;

Balanced Factorization by Meyer and Sepulchre;

SVT by Candès and Becker;

ADMiRA by Lee and Bresler;

LMaFit by Wen, Yin and Zhang.

LMaFit is a serious contestant.

 $m = n = 10\,000, r = 10, \text{ knowledge} = 1\%$

Our method is fastest on rectangular matrices. $m = 1\,000, n = 30\,000, r = 5$, knowledge = 2.6%

Final thoughts

Many practical optimization problems live on a manifold.

Efficient tools are readily available to exploit their geometry.

These tools are backed up by a solid theory.

Given enough information, we consistently recover X. Noiseless, $m = n = 1\,000$, r = 5

26

Computation time is proportional to \ddagger known entries. Noiseless, $m = n = 1\,000$, r = 5

Computation time scales reasonably with the rank. Noiseless, $m = n = 1\,000$, knowledge = 25%

In the presence of noise, we are close to optimal. Noisy, m = n = 500, r = 4

