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Recommender systems tell you which items you might like
based on a huge database of ratings

X =


? ? ? ? ? ? ? ?

← n cols →

? ? ? ? ? ? ? ?
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?

↑
m rows
↓? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?

? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?
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We record ratings of movies by the customers
One row per movie, one column per customer

X =


? ? ? ? ? ? ? ? ? ? ?

customer j

? ? ? ? ?
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? movie i
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?
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We record ratings of movies by the customers
One row per movie, one column per customer

X =


? ? ? ? ? ? ? ? ? ? ?

customer j

? ? ? ? ?
? ? ? ? ? ? ? ? ? ? 4 ? ? ? ? ? movie i
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?
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Most ratings are unknown. Our job is to complete X.

X =


1 ? 2 ? ? 5 ? ? ? ? 5 ? ? ? 2 ?
2 ? 2 ? ? 4 ? ? ? 3 4 ? 5 ? ? ?
1 ? 5 2 ? 4 ? 4 ? ? ? 2 ? ? ? ?
? 1 ? 3 ? ? ? 3 ? ? 3 ? 2 ? 5 5
4 4 ? ? ? ? 5 ? ? ? 1 ? ? 1 ? 4
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We could exploit similarities between customers
to complete the matrix

X =


1 ? 2 ? ? 5 ? ? ? ? 5 ? ? ? 2 ?
2 ? 2 ? ? 4 ? ? ? 3 4 ? 5 ? ? ?
1 ? 5 2 ? 4 ? 4 ? ? ? 2 ? ? ? ?
? 1 ? 3 ? ? ? 3 ? ? 3 ? 2 ? 5 5
4 4 ? ? ? ? 5 ? ? ? 1 ? ? 1 ? 4



In a global, automated, scalable way?
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We assume that X has low-rank r
Hence, that ratings are inner products in a small space Rr

X =


1 ? 2 ? ? 5 ? ? ? ? 5 ? ? ? 2 ?
2 ? 2 ? ? 4 ? ? ? 3 4 ? 5 ? ? ?
1 ? 5 2 ? 4 ? 4 ? ? ? 2 ? ? ? ?
? 1 ? 3 ? ? ? 3 ? ? 3 ? 2 ? 5 5
4 4 ? ? ? ? 5 ? ? ? 1 ? ? 1 ? 4



≈


? ?
? ?
? ?
? ?
? ?

 ·
(
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?

)

Rationale: only a few factors influence our preferences
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We map movies and customers to this r-D space
without any human intervention
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Toward a reasonable formulation



The optimal choice UW is an m-by-n matrix of rank r
in best agreement with the |Ω| known entries of X

min
U∈Rm×r,W∈Rr×n

∑
(i,j)∈Ω∣∣∣∣

known entries

(
(UW )ij −Xij

known ratings∣∣∣∣ )2
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This is reasonable, but

min
U∈Rm×r,W∈Rr×n

∑
(i,j)∈Ω

(
(UW )ij −Xij

)2

This objective is invariant under invertible transformations.

The pair (U,W ) is equivalent to (UM,M−1W ),
for any r-by-r invertible matrix M .
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We would like to get rid of the invariance. Why?

The search space Rm×r × Rr×n is bigger than it ought to be;

Convergence theorems often assume isolated critical points;

And it may prevent superlinear convergence rates altogether.

Also, ’cause we can.
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Step 1: redefine the objective function

min
U∈Rm×r,W∈Rr×n

∑
(i,j)∈Ω

(
(UW )ij −Xij

)2

W is the solution of a simple least squares problem.

13



Step 1: redefine the objective function

min
U∈Rm×r

min
W∈Rr×n

∑
(i,j)∈Ω

(
(UW )ij −Xij

)2

W is the solution of a simple least squares problem.

13



Step 1: redefine the objective function

min
U∈Rm×r

min
W∈Rr×n

∑
(i,j)∈Ω

(
(UW )ij −Xij

)2

W is the solution of a simple least squares problem.

13



Step 1: redefine the objective function

min
U∈Rm×r

min
W∈Rr×n

∑
(i,j)∈Ω

(
(UW )ij −Xij

)2
∣∣∣∣

f(U)

W is the solution of a simple least squares problem.
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Step 2: identify the right space for the objective function

f(U) = min
W∈Rr×n

∑
(i,j)∈Ω

(
(UW )ij −Xij

)2

For all invertible M ∈ Rr×r, f(U) = f(UM).

Hence, f is well defined over the set of equivalence classes [U ]:

[U ] = {UM : M ∈ Rr×r is invertible}.
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The set of equivalence classes is
the Grassmann manifold Gr(m, r)

[U ] = {UM

∣∣∣∣
They have the same column space.

: M ∈ Rr×r is invertible}.

Gr(m, r) is the set of r-dimensional subspaces of Rm;

It has a well studied smooth manifold structure.
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How do you minimize f([U ]) over the Grassmann manifold?
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We use a Riemannian trust-region method: GenRTR

Absil et al. (2007) generalized trust-region methods to manifolds.

GenRTR is numerically efficient and comes with proofs.
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A few numerical tests



We compare seven algorithms

RTRMC is our method,
with Hessian (2nd order) and without Hessian (1st order);

OptSpace by Keshavan and Oh;

Balanced Factorization by Meyer and Sepulchre;

SVT by Candès and Becker;

ADMiRA by Lee and Bresler;

LMaFit by Wen, Yin and Zhang.
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LMaFit is a serious contestant.
m = n = 10 000, r = 10, knowledge = 1%
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Our method is fastest on rectangular matrices.
m = 1000, n = 30 000, r = 5, knowledge = 2.6%
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Final thoughts



Take home message

Many practical optimization problems live on a manifold.

Efficient tools are readily available to exploit their geometry.

These tools are backed up by a solid theory.
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Given enough information, we consistently recover X.
Noiseless, m = n = 1000, r = 5

Averaged total RMSE over 100 tests
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Computation time is proportional to ] known entries.
Noiseless, m = n = 1000, r = 5

Averaged computation time over 100 tests
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Computation time scales reasonably with the rank.
Noiseless, m = n = 1000, knowledge = 25%

Averaged computation time over 30 tests
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In the presence of noise, we are close to optimal.
Noisy, m = n = 500, r = 4
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