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Recommender systems tell you which items you might like

based on a huge database of ratings
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We record ratings of movies by the customers

One row per movie, one column per customer

customer j
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We record ratings of movies by the customers

One row per movie, one column per customer

customer j
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Most ratings are unknown. Our job is to complete X.
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We could exploit similarities between customers

to complete the matrix
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In a global, automated, scalable way?



We assume that X has low-rank r

Hence, that ratings are inner products in a small space R"
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Rationale: only a few factors influence our preferences
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We map movies and customers to this r-D space

without any human intervention
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Toward a reasonable formulation



The optimal choice UW is an m-by-n matrix of rank r
in best agreement with the |2| known entries of X

known ratings
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known entries
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This is reasonable, but

i D
UeRme",IVII}eRTX" Z ((UW)U_XU')

This objective is invariant under invertible transformations.
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This is reasonable, but

1 2
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This objective is invariant under invertible transformations.

The pair (U, W) is equivalent to (UM, M~*W),
for any r-by-r invertible matrix M.
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We would like to get rid of the invariance. Why?

m The search space R™*" x R"*"™ is bigger than it ought to be;
m Convergence theorems often assume isolated critical points;

m And it may prevent superlinear convergence rates altogether.
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We would like to get rid of the invariance. Why?

m The search space R™*" x R"*"™ is bigger than it ought to be;

Convergence theorems often assume isolated critical points;

m And it may prevent superlinear convergence rates altogether.

m Also, 'cause we can.
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Step 1: redefine the objective function
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Step 1: redefine the objective function

ol i (OW)y
(4,5)€Q

- Xi)"
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Step 1:

redefine the objective function

min min Z (UW);; — U)z

UERmXr WeRrxn
(4,5)€Q

W is the solution of a simple least squares problem.
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Step 1: redefine the objective function

min min Z (UW);; — U)z

UeRmxT  WeRrxn
(1,5)€Q

f(U)

W is the solution of a simple least squares problem.
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Step 2: identify the right space for the objective function

fO)= min > (UW)y - Xy5)°

WeRrxn
(i,5)EQ

For all invertible M € R™*",  f(U) = f(UM).
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Step 2: identify the right space for the objective function

— 1 P — .. 2
fU) = jmin > (W) = Xy)
(4,7)€Q

For all invertible M € R™*",  f(U) = f(UM).

Hence, f is well defined over the set of equivalence classes [U]:

[U] ={UM : M € R™" is invertible}.
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[U]={UM : M € R™" is invertible}.
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[U ={UM : M € R™" is invertible}.

They have the same column space.
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The set of equivalence classes is
the Grassmann manifold Gr(m, r)

[U]={UM : M € R"™" is invertible}.

They have the same column space.

m Gr(m,r) is the set of r-dimensional subspaces of R™;

m It has a well studied smooth manifold structure.
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How do you minimize f([U]) over the Grassmann manifold?


















We use a Riemannian trust-region method: GenRTR

m Absil et al. (2007) generalized trust-region methods to manifolds.

m GenRTR is numerically efficient and comes with proofs.
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A few numerical tests



We compare seven algorithms

RTRMC is our method,
with Hessian (2" order) and without Hessian (15 order);

OptSpace by Keshavan and Oh;

Balanced Factorization by Meyer and Sepulchre;
SVT by Candeés and Becker;

ADMIiRA by Lee and Bresler;

LMaFit by Wen, Yin and Zhang.
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LMaFit

IS a serious contestant.

m =mn = 10000, » = 10, knowledge = 1%
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Our method is fastest on rectangular matrices.
m = 1000, n = 30000, » = 5, knowledge = 2.6%
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Final thoughts



Take home message

Many practical optimization problems live on a manifold.

Efficient tools are readily available to exploit their geometry.

These tools are backed up by a solid theory.
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Given enough information, we consistently recover X.

Noiseless, m =n =1000, »r =5

Averaged total RMSE over 100 tests
104 -

100 L

10712 1 1 J

0% 20% 40% 60%
Knowledge

26



Computation time is proportional to f known entries.

Noiseless, m =n =1000, »r =5

Averaged computation time over 100 tests
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Computation time scales reasonably with the rank.
Noiseless, m = n = 1000, knowledge = 25%

Averaged computation time over 30 tests
160
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In the presence of noise, we are close to optimal.

Noisy, m = n = 500, r =4

Total RMSE

Total RMSE averaged over 15 tests with SNR = 4
1.5

GenRTR 2nd order
GenRTR 1st order
OptSpace
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