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Abstract. The problem of fitting smooth curves to data on the group of
rotations is considered. This problem arises when resampling or denois-
ing data points that consist in rotation matrices measured at different
times. The rotation matrices typically correspond to the orientation of
some physical object, such as a camera or a flying or submarine device.
We propose to compute sequences of rotations (discretized curves) that
strike a tunable balance between data fidelity and smoothness, where
smoothness is assessed by means of a proposed notion of velocity and
acceleration along discrete curves on the group of rotations. The best
such curve is obtained via optimization on a manifold. Leveraging the
simplicity of the cost, we present an efficient algorithm based on second-
order Riemannian trust-region methods, implemented using the Manopt
toolbox.

Keywords: optimization on manifolds; non-parametric regression; de-
noising of rotations; video stabilization; 3D motion planning.

1 Introduction

Rotations in Rn are conveniently represented as n×n orthogonal matrices with
determinant +1 (as opposed to -1, that is, reflections are not allowed). The set
of such rotations forms a Lie group, called the special orthogonal group SO(n).
The usual Riemannian structure on SO(n) is that of a Riemannian submanifold
of Rn×n endowed with the inner product 〈H1, H2〉 = trace(H>1H2), see Table 1.

We consider problems for which the data points consist in measurements of
rotations p1, . . . , pN ∈ SO(n) corresponding to measurement times t1 ≤ · · · ≤ tN
and such that the task is to find a curve γ : [t1, tN ] → SO(n) that is as smooth
(as regular) as possible while reasonably fitting the data: γ(ti) ≈ pi. In other
words: the task it that of regression on the group of rotations. Parametric re-
gression would further restrict the space of admissible curves (see for example [6]
for regression using Riemannian polynomials). We consider non-parametric re-
gression, which can be modeled as the task of minimizing the cost functional [8]:

Ec(γ) =
1

2

N∑
i=1

wi dist2(γ(ti), pi) +
λ

2

∫ tN

t1

‖γ̇(t)‖2 dt+
µ

2

∫ tN

t1

‖γ̈(t)‖2 dt, (1)



Set: SO(n) = {A ∈ Rn×n : A>A = In and det(A) = 1}
Tangent spaces: TASO(n) = {AΩ ∈ Rn×n : Ω +Ω>= 0}
Inner product: 〈AΩ1, AΩ2〉 = trace(Ω>1Ω2)

Vector norm: ‖AΩ‖ =
√

〈AΩ,AΩ〉
Distance: dist(A,B) = ‖ log(A>B)‖
Exponential: ExpA(AΩ) = A exp(Ω)

Logarithm: LogA(B) = A log(A>B)

Projector: PA(H) = A skew
(
A>H

)
Table 1. Toolbox for SO(n). Matrix norms correspond to the Frobenius norm.

where γ̇(t) is the velocity of γ at time t, i.e., γ̇(t) = d
dtγ(t)—which is necessarily

a tangent vector at γ(t)—and γ̈(t) is the acceleration of γ at time t, i.e., the
orthogonal projection of the second derivative of γ in the ambient space to the

tangent space at γ(t): γ̈(t) = Pγ(t)(
d2

dt2 γ(t)). The parameters λ ≥ 0 and µ ≥ 0
enable the user to tune the balance between the conflicting goals of fitting and
smoothness. When λ > 0, µ = 0, the optimal γ is piecewise geodesic. When
λ = 0, µ > 0, the optimal γ is an approximating cubic spline.

Regression may serve at least two purposes: that of denoising the data (the
measurements pi may be noisy) and that of resampling the data (a user may
need to know the rotation/orientation of some object at a time t for which no
measurement is available). In the extreme case where γ(ti) = pi is enforced
exactly (interpolation case), it is this latter purpose that is most important.

In particular, interpolation on SO(n) may be useful for 3D motion planning
(of a camera in 3D computer graphics for example) where the position and orien-
tation of an object is set by a user who requires the system to smoothly transition
from one configuration to the next at prescribed times. Likewise, regression on
SO(n) may be useful to stabilize video frames acquired by an unsteady cam-
era [7]. In that context, it is useful to estimate the orientation of the camera at
each frame, using either image processing or a built-in gyroscope. In the latter
case, it may furthermore be so that the frames are acquired at different times
than the orientation measurements, which requires a resampling that can be
achieved with the proposed method. The present contribution could be applied
directly to the camera stabilization application considered in [7], with the nice
benefit of additional smoothness owing to a second-order regularity term.

Computationally, the problem formulation using (1) may not be the most
practical as it involves an optimization problem in infinite dimension on a man-
ifold. To address this concern, discretization methods were proposed in [4]. The

idea is to search for a sequence of rotations γ = (γ1, . . . , γNd
) ∈ SO(n)

Nd as-
sociated to time labels t1 = τ1 < τ2 < · · · < τNd

= tN such that the discrete
sequence γ appears as smooth as possible (we need to define that) and fits the
data as well as possible.



For simplicity of exposition, we assume throughout that the discretization
times τi are uniformly spaced over the interval [t1, tN ] with spacing ∆τ = τi+1−
τi. This restriction is purely for ease of notation and is easy to relax.

There are three steps to take in order to discretize the cost function (1).
First, the data points pi corresponding to time labels ti need to be matched
to discretization points γi corresponding to discretization times τi. To this end,
define si, an index between 1 and Nd such that τsi is as close as possible to ti
(typically, one would include the ti’s as a subset of the τi’s for perfect matching).
Second, the notions of velocity γ̇(t) and acceleration γ̈(t), both vectors in the
tangent space Tγ(t)SO(n), need to be discretized. For curves in Rn, the velocity
may be approximated using finite differences as such:

γ̇(τi) ≈
γ(τi+1)− γ(τi)

∆τ
. (2)

The geometric finite differences method proposed in [4] builds on the observation
that the difference appearing in the numerator is not defined for manifolds in
general but may be interpreted: it is a vector starting at γi = γ(τi), pointing
toward γi+1 and with length equal to the distance separating these two points.
The logarithmic map on a manifold (the inverse of the exponential map, which
generates geodesics) embodies this same notion, hinting toward the following
definition of velocity along a discrete curve on SO(n):

γ̇i , γi
log(γ>i γi+1)

∆τ
. (3)

Likewise, the acceleration at time τi may be approximated for curves in Rn:

γ̈(τi) ≈
(γ(τi+1)− γ(τi)) + (γ(τi−1)− γ(τi))

∆τ2
. (4)

Using the same trick, the discrete acceleration on a manifold is defined as:

γ̈i , γi
log(γ>i γi+1) + log(γ>i γi−1)

∆τ2
. (5)

This formula exhibits several desirable properties. In particular, γ̈i is zero if and
only if there exists a geodesic γ(t) such that γ(τj) = γj , j = i−1, i, i+1. Finally,
the third step to discretize (1) is to replace the integrals over [t1, tN ] with an
appropriately weighted sum of the numbers ‖γ̇i‖2 and ‖γ̈i‖2. Combining these
steps yields the cost function from [4] for discrete regression on SO(n):

Ed(γ) =
1

2

N∑
i=1

wi ‖ log(γ>sipi)‖
2 +

λ

2

Nd−1∑
i=1

∆τ

∥∥∥∥∥ log(γ>i γi+1)

∆τ

∥∥∥∥∥
2

+
µ

2

Nd−1∑
i=2

∆τ

∥∥∥∥∥ log(γ>i γi+1) + log(γ>i γi−1)

∆τ2

∥∥∥∥∥
2

. (6)



In [4], the cost function (6) is minimized over SO(n)
Nd using a Riemannian

conjugate gradient method [2]. It turns out that this first-order algorithm can
be slow, in particular for large values of µ. This hints that second-order methods
might be of use. Unfortunately, computing the Hessian of Ed is intricate because
of the matrix logarithm.

In this communication, we propose to simplify the cost function (6) to make
it both simpler to compute and simpler to differentiate. This paves the way
toward second-order optimization methods to solve the regression problem on
SO(n). In the next section, the new cost function is proposed and differentiated.
In Section 3, an algorithm to minimize the cost is described. Section 4 presents
some numerical experiments.

2 A simpler cost function

Because we aim at second-order optimization methods and because it is not
convenient to differentiate the matrix logarithm twice, in simplifying the cost
function (6) we will get rid of all matrix logarithms.

The proposed cost function. A first obvious observation is that, for two close
rotation matrices A,B ∈ SO(n), the geodesic distance and the chordal distance
(that is, the distance in the embedding space Rn×n) are approximately equal:

dist(A,B) =
∥∥log(A>B)

∥∥ ≈ ‖B −A‖ .
Indeed, let Ω be skew-symmetric with ‖Ω‖ = 1 and let B = A exp(tΩ). Then,

dist2(A,B) =
∥∥log(A>B)

∥∥2 = t2,

‖B −A‖2 = ‖exp(tΩ)− In‖2 =

∥∥∥∥tΩ +
1

2
t2Ω2 +O(t4)

∥∥∥∥2
= t2 + t3

〈
Ω,Ω2

〉
+O(t4) = t2 +O(t4).

We used the Taylor expansion of the matrix exponential exp(Ω) =
∑∞
k=0Ω

k/k!
and the fact that Ω2 is symmetric, so that the inner product

〈
Ω,Ω2

〉
vanishes.

This first observation is sufficient to take care of the two first terms in (6).
For the third term, let us try to approximate the logarithmic map directly. The
map B 7→ A log(A>B) associates to B ∈ SO(n) a tangent vector at A ∈ SO(n)
that points from A to B. To produce a similar vector, a simple way is to project
the vector B − A from the ambient space Rn×n to the tangent space at A (an
idea that generalizes nicely [3]):

PA(B −A) = A skew
(
A>(B −A)

)
= A skew

(
A>B − In

)
= A skew

(
A>B

)
.

This suggests to approximate the matrix logarithm by the operator skew(M) =
(M−M>)/2. Indeed, with the same matrices A and B such that A>B = exp(tΩ),

log(A>B) = tΩ,

skew
(
A>B

)
= skew

(
I + tΩ +

1

2
t2Ω2 +O(t3)

)
= tΩ +O(t3).



Hence, for close enough matrices A and B, the skew operator is a good ap-
proximation of the matrix logarithm. Furthermore, it has the nice advantage of
returning vectors in the correct tangent space.

Piecing these two observations together yields the following cost function:

E(γ) =
1

2

N∑
i=1

wi ‖γsi − pi‖2 +
λ

∆τ

1

2

Nd−1∑
i=1

‖γi − γi+1‖2

+
µ

∆τ3
1

2

Nd−1∑
i=2

∥∥skew
(
γ>i (γi+1 + γi−1)

)∥∥2 . (7)

This is the cost function used in the present paper. Notice that, as the discretiza-
tion becomes finer with Nd →∞, ∆τ → 0, this cost function converges (in some
natural sense) to the continuous formulation (1).

Interestingly, one obtains the same simplified cost function by exploiting the
fact that the finite differences (2) and (4) do make sense in the embedding space
Rn×n. Then, γ̇i is defined as the (not tangent) vector γ̇i = (γi+1 − γi)/∆τ and
γ̈i is defined as the (tangent) vector γ̈i = Pγi(γi+1 − 2γi + γi−1)/∆τ2.

Differentiating E. Consider the two functions f and g below:

f : SO(n)
2 → R, f(A,B) =

1

2
‖A−B‖2 ,

g : SO(n)
3 → R, g(A,B,C) =

1

2

∥∥skew
(
A>(B + C)

)∥∥2 .
The cost E (7) is a linear combination of f and g with the γi’s as input. Hence,
it suffices to provide formulas for the gradient and Hessian of f and g to obtain
the gradient and Hessian of E.

Let ∇f(A,B) denote the Euclidean gradient of f , that is, the gradient of f
seen as a function on (Rn×n)2. Similarly, let ∇2f(A,B) denote the Euclidean
Hessian of f . Obviously,

∇f(A,B) = (A−B,B −A), ∇2f(A,B)[Ȧ, Ḃ] = (Ȧ− Ḃ, Ḃ − Ȧ). (8)

These Euclidean quantities may be transformed into their Riemannian counter-
parts by exploiting the fact that SO(n) is a Riemannian submanifold of Rn×n.
Indeed, it holds for a function h : SO(n) → R that the Riemannian gradient
gradh(A) is obtained from the Euclidean gradient ∇h(A) via orthogonal pro-
jection on the tangent space at A [2, § 3.6.1], that is,

gradh(A) = A skew
(
A>∇h(A)

)
. (9)

Similarly, the Hessian of h atA along a tangent vectorAΩ—Ω is skew-symmetric—
is obtained by projecting the directional derivative of the Riemannian gradient
back to the tangent space [2, § 5.3.3]:

Hessh(A)[AΩ] = A skew
(
A>∇2h(A)[AΩ]−Ω sym

(
A>∇h(A)

))
. (10)



Applying identities (9) and (10) to (8) (entry-wise) yields explicit formulas for
the Riemannian gradient and Hessian of f . Similarly for the function g, the
Euclidean gradient and Hessian are:

∇g(A,B,C) =
(
− (B + C)R,AR,AR

)
,

∇2g(A,B,C)[Ȧ, Ḃ, Ċ] =
(
−(Ḃ + Ċ)R− (B + C)Ṙ, ȦR+AṘ, ȦR+AṘ

)
,

with R = skew
(
A>(B + C)

)
and Ṙ = skew

(
Ȧ>(B + C) +A>(Ḃ + Ċ)

)
. Again,

the identities (9) and (10) provide an explicit means of transforming ∇g and
∇2g into their Riemannian counterparts.

3 Trust-regions to minimize the cost

In order to minimize the cost function E (7), we use the Riemannian trust-
regions method (RTR) [1]. We work with Manopt [5] (http://www.manopt.org),
a Matlab toolbox for optimization on manifolds. The implementation of the RTR
algorithm in Manopt is an adaptation of the original GenRTR code [1].

Using the Manopt toolbox, a number of steps required for the usage of opti-
mization algorithms on manifolds are simplified. In particular, the geometry of
the manifold SO(n)

Nd is already included in the toolbox, so that we do not need
to provide functions for the metric, the exponential and logarithmic maps etc.
Conveniently, the identities (9) and (10) are built in the toolbox too, so that it
is sufficient to provide code for the Euclidean gradient and Hessian. Diagnostics
tools are included to help the user verify that the code is correct.

The RTR method requires code for the cost, its gradient and its Hessian,
which we worked out in the previous section. It also requires an initial guess (an
initial iterate), which we describe below. Reasons for choosing GenRTR include
the strong theoretical guarantees (global convergence toward critical points and
quadratic convergence speed in the neighborhood of critical points) as well as
its excellent applicative track record.

All the default parameter values for GenRTR are used, except for the fol-
lowing two. First, the maximum trust-region radius ∆̄ is set to π

√
nNd (and the

initial trust-region radius is set to ∆0 = ∆̄/8, as usual). This scales as the max-

imum distance between two points on the manifold SO(n)
Nd . Second, the limit

on the number of Hessian evaluations is set to three times the dimension of the
search space, that is, 3n(n−1)2 Nd. In theory, to solve a linear system involving the
Hessian using a conjugate gradient algorithm, it should be sufficient to authorize
up to as many Hessian evaluations as the dimension of the manifold. In practice
though, more iterations are sometimes required, possibly due to the finite pre-
cision of the computations. We authorize many Hessian evaluations in order to
exhibit the role of second-order information in solving the present problem.

An initial guess. The search space SO(n)
Nd is not convex, and there is thus no

guarantee that GenRTR will find a global minimizer of E. In order to increase



the chances of finding a local minimizer of good quality, the initial guess should
be chosen as close as possible to the global minimizer (which is of course un-
known). The proposed heuristic is to choose the initial rotations γi according to
a piecewise-geodesic interpolation of the data points pi.

A refinement procedure. For positive values of the second-order regularity param-
eter, µ > 0, the various optimization algorithms we tried exhibit relatively slow
convergence while far away from a critical point. In order to work with a large
number Nd of discretization points, it is helpful to first compute a solution with
small Nd; this solution can then be refined by sampling the piecewise-geodesic
curve linking the obtained points γi. Doing so provides an excellent initial guess
for the problem with a larger value of Nd. This procedure can be iterated.

4 Numerical experiments

We perform two experiments to illustrate the following points: (i) the new cost
function is appropriate to produce smooth curves on SO(n), and (ii) trust-region
methods are more efficient than the conjugate gradient algorithm proposed in [4]
for the purpose of regression on SO(n). These points are illustrated in Fig-
ures 1 and 2 respectively, with the corresponding experimental setups described
in the captions. In both cases, there are N = 4 data points with time labels
[t1, t2, t3, t4] = [0, 1/3, 2/3, 1] and identical weights wi = 1.

A possible explanation of the success of second-order methods for the prob-
lem at hand is the large condition number of the Hessian at the solution. For
µ = 10−3, 10−2, 10−1 resp., the condition number is 6.1 ·105, 7.1 ·106, 7.9 ·107. In-
terestingly, it can also be seen from Figure 2 that the same trust-region method
without knowledge of the Hessian, where the Hessian is approximated by finite
differences of the gradient (RTR-FD), performs well too, so that all the credit
cannot be given to knowledge of the Hessian alone.
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Fig. 1. Minimizing E (7) produces smooth-looking discrete regression curves on SO(n).
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row: 1, 5, 9, 13. The initial guess (top row) is piecewise-geodesic. The smoothest curve
(bottom row) is almost geodesic.
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Fig. 2. The Riemannian trust-region method with exact Hessian information (RTR)
widely outperforms the conjugate gradient method (CG) (used in [4] for a similar
cost) for minimizing the cost E (7). The plot shows the evolution of the norm of the
gradient of the cost function for both RTR and CG with Nd = 97 discretization points
and regularization parameters λ = 0 and µ = 10−2. In [4], such values of µ were pointed
out as challenging for CG. The RTR-FD curve shows the convergence profile of the
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of E (an algorithm for which there is currently no local convergence theory).
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