
Université catholique de Louvain

Pôle d’ingénierie mathématique (INMA)
Travail de fin d’études

Promoteur : Prof. Pierre-Antoine Absil

DISCRETE CURVE FITTING ON MANIFOLDS

NICOLAS BOUMAL

Louvain-la-Neuve, Juin 2010

Je remercie chaleureusement
Pierre-Antoine Absil, mon promoteur

ainsi que
Quentin Rentmeesters, son doctorant,

pour leur guidance éclairée.

Je dédicace ce travail à
Pierre Bolly, qui m’a introduit aux mathématiques.

Contents

Contents i

Notations iii

Introduction 1

1 Discrete curve fitting in R
n 3

1.1 The problem in a continuous setting . 4
1.2 Objective discretization . 4
1.3 Least-squares formulation . 6
1.4 What if we generalize to Riemannian manifolds? 6
1.5 Short state of the art . 7

2 Elements of Riemannian geometry 9

2.1 Charts and manifolds . 10
2.2 Tangent spaces and tangent vectors . 11
2.3 Inner products and Riemannian manifolds . 13
2.4 Scalar fields on manifolds and the gradient vector field 14
2.5 Connections and covariant derivatives . 15
2.6 Distances and geodesic curves . 17
2.7 Exponential and logarithmic maps . 18
2.8 Parallel translation . 20

3 Objective generalization and minimization 23

3.1 Geometric finite differences . 24
3.2 Generalized objective . 25
3.3 Alternative discretizations of the objective* . 26
3.4 A geometric steepest descent algorithm . 28
3.5 A geometric non-linear conjugate gradient algorithm 29
3.6 Step choosing algorithms . 31

4 Discrete curve fitting on the sphere 33

4.1 S
2 geometric toolbox . 34

4.2 Curve space and objective function . 35
4.3 Gradient of the objective . 37
4.4 Results and comments . 37

5 Discrete curve fitting on positive-definite matrices 49

5.1 P
n
+ geometric toolbox . 50

5.2 Curve space and objective function . 51
5.3 Gradient of the objective . 52
5.4 Alternative I: linear interpolation . 56
5.5 Alternative II: convex programming . 56
5.6 Alternative III: vector space structure . 57
5.7 Results and comments . 58

Conclusions and perspectives 63

i

ii CONTENTS

A Line search derivative on S
2 65

B Gradient of Ea for P
n
+ 67

C SO(3) geometric toolbox 69

Bibliography 71

Notations

‖ · ‖ usual 2-norm in R
n, Frobenius norm for matrices . 4

M,N (usually) smooth, finite-dimensional, Riemannian manifolds 10
x, y, p points on a manifold .
TxM tangent space to M at x . 12
ξ, η, v tangent vectors to a manifold . 12
X,Y vector fields on a manifold . 13
Df(x)[ξ] derivative of f at x in the direction ξ . 14
dist geodesic distance on a manifold . 17
Exp exponential map on a manifold . 19
Log logarithmic map on a manifold . 19
S

2 unit sphere embedded in R
3 . 34

H
n set of symmetric matrices . 50

P
n
+ set of positive-definite matrices . 50

Table 1: Notations

iii

iv

Introduction

Let p1, p2, . . . , pN be N data points in the Euclidean space R
n with time labels t1 ≤ t2 ≤ · · · ≤ tN .

A classic problem arising in many disciplines consists in searching for a curve γ : [t1, tN] → R
n

that simultaneously (i) reasonably fits the data and (ii) is sufficiently smooth. This may, among
other things, help reduce measurement noise and fill gaps in the data. One way of formalizing
this loose description of a natural need is to express γ as the minimizer of an energy function
such as

E(γ) =
1

2

N
∑

i=1

‖pi − γ(ti)‖2 +
λ

2

∫ tN

t1

‖γ̇(t)‖2dt+
µ

2

∫ tN

t1

‖γ̈(t)‖2dt, (1)

defined over some suitable curve space Γ. The tuning parameters λ and µ enable the user to
tune the balance between the conflicting goals of fitting and smoothness. It is well known (see
state of the art, section 1.5) that (i) when λ > 0, µ = 0, the optimal γ is piecewise affine and (ii)
when λ = 0, µ > 0 the optimal γ is an approximating cubic spline (provided Γ contains these
curves). Cubic splines are piecewise cubic polynomial curves of class C2.

We focus on a broader problem. The data points pi are now allowed to lie on a Riemannian
manifold M. R

n is the simplest example of such a manifold. Other examples treated in this
document include the sphere embedded in R

3, which we note S
2, the cone of positive-definite ma-

trices P
n
+ and the special orthogonal group SO(3). Generalizations of (1) to manifolds have been

proposed. In particular, Samir et al. give, mutatis mutandis, the following definition in [SASK09]:

E(γ) =
1

2

N
∑

i=1

dist2 (pi, γ(ti)) +
λ

2

∫ tN

t1

〈γ̇(t), γ̇(t)〉γ(t) dt+
µ

2

∫ tN

t1

〈

D2γ

dt2
,
D2γ

dt2

〉

γ(t)

dt, (2)

where dist denotes the Riemannian (geodesic) distance on M, 〈·, ·〉 the Riemannian metric, γ̇

the first derivative of γ and D2γ
dt2 the second covariant derivative of γ (chapter 2 defines these

terms and other relevant elements of Riemannian geometry). Samir et al. solve this problem
by computing the gradient of E in the so-called Palais metric and applying a steepest descent
scheme to minimize E. In essence, the problem is a variational problem in infinite dimension.
The (necessary) discretization for implementation purposes arises at the very end of the algo-
rithm design process. In conclusion of [SASK09], the authors wonder what would happen if one
were to discretize (2) directly. The present work is an attempt to answer that question.

The main contribution of this document lies in the proposed discretization of the problem.
The curve space is reduced to the set of sequences of Nd points on the manifold, Γ = M×. . .×M
(Nd copies of M). For a discrete curve γ = (γ1, . . . , γNd

) ∈ Γ, each γi is associated to a fixed
time τi such that t1 = τ1 < τ2 < · · · < τNd

= tN . We propose the following discretization of (2):

E(γ) =
1

2

N
∑

i=1

dist2 (pi, γsi
) +

λ

2

Nd
∑

i=1

αi 〈vi, vi〉γi
+
µ

2

Nd
∑

i=1

βi 〈ai, ai〉γi
. (3)

Here, the indices si are chosen such that τsi
is closest (ideally equal) to ti. The tangent vectors

vi and ai, rooted at γi, are approximations to the velocity and acceleration vectors γ̇(ti) and
D2γ
dt2 (ti). We compute these with generalized finite differences, which we introduce in this work.
The weights αi and βi are chosen based on a suitable numerical integration scheme like, e.g., the
trapezium method, such that the sums effectively discretize the integrals present in (2). We also

1

2

propose other ways of discretizing (2). Interestingly, they all come down to the same discretiza-
tion in R

n but, in general, differ on manifolds. Since the curve space is now finite-dimensional,
we may apply the optimization algorithms from [AMS08] to minimize (3). Chapter 3 covers the
details.

Measurements on manifolds arise naturally in applications. To cite but a few examples:

• Positions on Earth closely resemble points on S
2;

• Configurations of rigid bodies in space are fully described by the position of their center
of mass and their orientation, which jointly constitute a point of SE(3) = R

3 × SO(3), the
special Euclidean group. Rigid body motion estimation thus comes down to regression on
SE(3). The same mathematics can be used for smooth camera transitions in computer
graphics;

• Diffusion-Tensor MRI measures (noisy) positive-definite matrices in the brain for medical
imaging purposes;

• Shapes (seen as closed curves) can be measured, e.g., by contour detectors applied to video
streams. Shapes belong to the shape space, a complex manifold we plan on working with
in the future.

Each time an application uses data belonging to (tractable) manifolds, noise reduction (i.e.,
smoothing) of the measurements and interpolation can be carried out by the generic techniques
developed in this document. For the control engineer, our algorithms may be helpful, e.g., in
case the control variables from the systems at hand belong to manifolds.

We successfully implemented our methods in R
n (chapter 1), on the sphere S

2 (chapter 4),
in the cone of positive-definite matrices P

n
+ (chapter 5) and on the special orthogonal group

SO(3) (appendix C). For P
n
+ and SO(3), we constructed explicit formulas for the gradients of

real-valued functions involving the matrix logarithm. Our results correspond nicely to what one
would expect based on the continuous case. Our short answer to the question Samir et al. ask is
that the regression problem on these manifolds can, in general, be solved satisfactorily via our
direct discretization approach.

Chapter 1

Discrete curve fitting in R
n

In this work, we show how one can find a discrete representation of a curve lying on a manifold
that strikes a (tunable) balance between data fitting and smoothness. Before we give a general
formulation of that problem (along with a proper definition of fitting and smoothness on mani-
folds), it is helpful to investigate the Euclidean case. This will help us take conscience of how the
vector space structure of R

n simplifies the whole process of formalizing and solving the problem.
Later on, we will use these observations to establish a list of tools we should have on manifolds
to adequately generalize some of the more fundamental concepts that can sometimes be hidden
behind generic linear combinations.

First off, we give a formal definition of the regression problem for time-labeled data in R
n in

the continuous case, i.e., what we are looking for is a suitable smooth curve defined over some
time interval and taking values in R

n. An objective function (energy function) will be introduced
to capture the balance we are seeking between fitting and smoothness. The second step consists
in proposing a discretization for that objective. As we will see, it is very natural to use finite
differences for that matter. Doing so, it will be sufficient to describe a curve using a finite set
of sampling points. We will solve the discrete problem in a least-squares framework. We will
then investigate where the vector space structure of R

n has been used, and where we should
generalize the problem formulation for the case of non-vector spaces. More specifically, in the
following chapters, we will consider finite-dimensional, smooth Riemannian manifolds, namely:
the sphere and the set of positive-definite matrices. We close this chapter by a short state of the
art.

3

4 CHAPTER 1. DISCRETE CURVE FITTING IN R
N

1.1 The problem in a continuous setting

Let us consider a collection of N weighted, time-labeled points pi in R
n: {(wi, ti, pi) : i =

1, . . . , N}, such that the time labels ti are increasing with i and such that the weights wi are
non-negative. We are searching for a Ck (smooth “enough”) function γ : [t1, tN] → R

n such that
γ approximately fits the data and such that γ is not too “wiggly”. The former means that we
would like γ(ti) to be close to pi (even more so when wi is high) whereas the latter means that
we would like the derivatives of γ to have a small norm, effectively discouraging sharp turns and
detours. Furthermore, we would like to be able to tune the balance between those two competing
objectives.

The following objective (energy) function, defined over the set of differentiable functions γ
from [t1, tN] to R

n, Ck([t1, tN],Rn) for some appropriate k, captures the problem description:

E(γ) =
1

2

N
∑

i=1

wi‖γ(ti) − pi‖2 +
λ

2

∫ tN

t1

‖γ̇(t)‖2 +
µ

2

∫ tN

t1

‖γ̈(t)‖2 (1.1)

We use the usual 2-norm in R
n, ‖x‖2 = xTx. The two parameters λ and µ enable us to adjust

the importance of the penalties on the 2-norms of the first derivative γ̇ and the second deriva-
tive γ̈. Playing with these parameters lets us move the minimizer of E from near interpolation
(piecewise linear or cubic splines) to near linear regression.

The curve space over which E has to be minimized to obtain our regression model has infinite
dimension. Minimizing E is a variational problem, which can be complicated, not to mention
that our goal in this document is to solve the problem on manifolds rather than on R

n. The
added complexity of the continuous approach is the main reason why, in the next section, we
discretize equation (1.1).

For the sake of completeness, let us mention that the continuous objective (1.1) has been
generalized to Riemannian manifolds to take this form:

E(γ) =
1

2

N
∑

i=1

dist2 (γ(ti), pi) +
λ

2

∫ tN

t1

〈γ̇(t), γ̇(t)〉γ(t) dt+
µ

2

∫ tN

t1

〈

D2γ

dt2
,
D2γ

dt2

〉

γ(t)

dt, (1.2)

where dist denotes the Riemannian (geodesic) distance, 〈·, ·〉 the Riemannian metric, γ̇ the first

derivative of γ and D2γ
dt2 the second covariant derivative of γ. Among others (see section 1.5),

in [SASK09], Samir et al. have solved regression problems based on this energy function. Their
strategy was to discretize as late as possible in the process of writing minimization algorithms.
In this document, we take the opposite strategy. We discretize curves immediately, reducing the
curve space to a finite dimensional manifold, hence reverting to the optimization setting already
covered in [AMS08]. This is in direct response to the concluding remarks of [SASK09].

1.2 Objective discretization

Instead of optimizing (1.1) over all functions in Ck([t1, tN],Rn), we would like to restrict ourselves
to a finite dimensional curve space Γ. A sensible way to do that would be to consider a finite
basis of smooth functions, then to optimize (1.1) over the space spanned by said basis. This
approach works great in the Euclidean case. It can be generalized to some extent, and at the
cost of increased complexity, to manifolds, see section 1.5.

We would like to treat the Euclidean regression problem in a way that will help us work out
the Riemannian case. This is why, even in this section devoted to the Euclidean case, we study
the simple discretization obtained by sampling curves in time.

More precisely, we consider the discrete curve space Γ = R
n × . . . × R

n ≡ R
n×Nd consisting

of all sequences of Nd points in R
n (the d subscript stands for discrete). The sampling times

1.2. OBJECTIVE DISCRETIZATION 5

τ1, . . . , τNd
are fixed.

For each discrete curve γ = (γ1, . . . , γNd
) ∈ Γ, there is an underlying continuous curve γ(t)

such that γ(τi) = γi. Giving a precise definition of such a γ(t) would yield a clean way of dis-
cretizing (1.1). We refrain from doing that because this is the specific point that makes matters
intricate on manifolds. In the Euclidean case though, one could use, e.g., shape functions like
the ones we use in finite element methods.

Let us review the three components of (1.1) and see how we can discretize them without
explicitly constructing an underlying γ(t).

Misfit penalty The first term of (1.1) penalizes misfit between the curve γ and the N data
points pi. We introduce indices s1, . . . , sN such that ti is closest to τsi

and define the misfit
penalty, Ed, as:

Ed : Γ → R
+ : γ 7→ Ed(γ) =

1

2

N
∑

i=1

wi‖γsi
− pi‖2. (1.3)

We can always choose the sampling times τi such that, for some si, ti = τsi
. There may be

multiple data points associated to the same discretization point, i.e., si = sj for some i 6= j.

Velocity penalty The second term of (1.1) penalizes a kind of L2-norm of the first derivative
of γ(t). Two things need to be discretized here: (i) the derivative γ̇ and (ii) the integral.
Mainstream numerical methods can help us here. We define the velocity penalty, Ev, as:

Ev : Γ → R
+ : γ 7→ Ev(γ) =

1

2

Nd
∑

i=1

αi‖vi‖2, (1.4)

where the velocity approximations vi are obtained via finite differences and the coefficients αi

correspond to the weights in, e.g., the trapezium rule for numerical integration. For the latter,
any method suited for fixed, non-homogeneous sampling is fine.

We delay the explicit construction of the formulas for vi, which is standard material, to
section 3.1. The important feature is that vi ≈ γ̇(ti) is a linear combination of γi and its
neighbor(s). At the end points, v0 and vNd

are defined as unilateral finite differences.

Acceleration penalty The third term of (1.1) penalizes the same kind of L2-norm of the
second derivative of γ(t). The discretization process is very similar to what was done for Ev. We
introduce the acceleration penalty Ea as:

Ea : Γ → R
+ : γ 7→ Ea(γ) =

1

2

Nd
∑

i=1

βi‖ai‖2. (1.5)

Again, the acceleration vector ai at γi can be obtained via finite differences as a linear combina-
tion of γi and its neighbors, except at the end points for which we need unilateral differences. The
appropriate formulas can be found in section 3.1. The βi’s are adequate weights for a numerical
integration method, which need not be the same as the αi’s used for Ev.

The complete objective function is the following, with tuning parameters λ and µ:

E : Γ → R
+ : γ 7→ E(γ) = Ed(γ) + λEv(γ) + µEa(γ) (1.6)

We state without proof that, as the maximum discretization step ∆τi = τi+1−τi goes to zero, the
optimal discrete objective value and the optimal continuous objective value become equivalent.
This is a consequence of Taylor’s theorem and of the definition of Riemann integrals.

In the next section, we show how (1.6) can be minimized by solving a sparse linear system
in a least-squares sense.

6 CHAPTER 1. DISCRETE CURVE FITTING IN R
N

1.3 Least-squares formulation

First off, let us observe that the objective function E is decoupled along the n dimensions of the
problem. Hence, we can focus on solving the problem in R

n with n = 1. The objective function
E:

E(γ) =
1

2

N
∑

i=1

wi‖γsi
− pi‖2 +

λ

2

Nd
∑

i=1

αi‖vi‖2 +
µ

2

Nd
∑

i=1

βi‖ai‖2, (1.7)

can be rewritten as a sum of vector 2-norms:

E(γ) =
1

2

∥

∥

∥

∥

∥

∥

∥







√
w1(γs1 − p1)

...√
wN (γsN

− pN)







∥

∥

∥

∥

∥

∥

∥

2

+
1

2

∥

∥

∥

∥

∥

∥

∥







√
λα1v1

...
√

λαNd
vNd







∥

∥

∥

∥

∥

∥

∥

2

+
1

2

∥

∥

∥

∥

∥

∥

∥







√
µβ1a1

...
√

µβNd
aNd







∥

∥

∥

∥

∥

∥

∥

2

.

The vectors appearing in this expression are affine combinations of the variables γi and hence
can be rewritten as (temporarily considering γ as a column vector):

E(γ) =
1

2
‖Pdγ − qd‖2 +

1

2
‖Pvγ‖2 +

1

2
‖Paγ‖2

=
1

2
γT (PT

d Pd + PT
v Pv + PT

a Pa)γ − qT
d Pdγ +

qT
d qd
2

=
1

2
γTAγ − bTγ + c,

for adequate matrices Pd ∈ R
N×Nd , Pv, Pa ∈ R

Nd×Nd , a vector qd ∈ R
N , and the obvious

definitions for A, b and c. The vector qd is the only object that depends on the data points
pi. The matrices Pd, Pv and Pa depend on the sampling times τi as well as on the various
weights introduced. Hence, A does not depend on the data and must be constructed only once
to solve a problem in R

n, even for n > 1. Differentiating and setting the gradient E to zero, we
straightforwardly obtain the linear system:

Aγ = b,

which needs to be solved n times, for n different b vectors. This problem has a rich structure
because of the nature of the constraints. Namely, A is 5-diagonal and positive-definite. The
regression problem in R

n can thus reliably be solved in O(nNd) operations. This is a standard
result from numerical linear algebra, see for example [VD08].

The discrete regression problem reduces to a highly structured quadratic optimization prob-
lem without constraints, which can be solved, e.g., with an LU decomposition and n back-
substitutions. If one wants to add constraints (possibly forcing interpolation by some or all of
the points pi or constraining speed/acceleration to respect lower and/or upper bounds on some
time intervals), modern Quadratic Programming solvers can come in handy.

1.4 What if we generalize to Riemannian manifolds?

In the next chapters, we generalize to Riemannian manifolds. In doing so, the lack of a vector
space structure raises two issues:

• How can we generalize the objective E? Finite differences, since they are linear combi-
nations, do not make sense on manifolds. Same goes for the Euclidean distance. We will
need substitutes for these elements. As we will see in section 3.1, the linear combinations
appearing in finite differences are not arbitrary: they make use of particular vectors that,
in a Euclidean space, lead from one point to another in the same space. We exploit that.

• Since the objective will not be quadratic anymore, how can we minimize it? We will need
optimization algorithms on manifolds. We will investigate iterative descent methods. For
this to work, we will need tools to transform curve guesses into other curves, moving in
some direction in the curve space.

1.5. SHORT STATE OF THE ART 7

In the next chapter, we study a few properties and tools of Riemannian geometry. These will
enable us to give a precise meaning to the loose terms used in this section. In the next section,
we give a brief review of the state of the art.

1.5 Short state of the art

Several existing methods for tackling the conflicting nature of the curve fitting problem (i.e.,
goodness of fit vs regularity) rely on turning the fitting task into an optimization problem where
one of the criteria becomes the objective function and the other criterion is turned into a con-
straint.

Let us first consider the case where the goodness of fit is optimized under a regularity con-
straint. When M = R

n, a possible regularity constraint, already considered by Lagrange, is to
restrict the curve γ to the family of polynomial functions of degree not exceeding m, (m ≤ N−1).
This least-squares problem cannot be straightforwardly generalized to Riemannian manifolds be-
cause of the lack of an equivalent of polynomial curves on Riemannian manifolds. The notion
of polynomial does not carry to M in an obvious way. An exception is the case m = 1; the
polynomial functions in R

n are then straight lines, whose natural generalization on Riemannian
manifolds are geodesics. The problem of fitting geodesics to data on a Riemannian manifold M
was considered in [MS06] for the case where M is the special orthogonal group SO(n) or the
unit sphere S

n.

The other case is when a regularity criterion is optimized under constraints on the goodness of
fit. In this situation, it is common to require a perfect fit: the curve fitting problem becomes an

interpolation problem. When M = R
n, the interpolating curves γ that minimize 1

2

∫ 1

0
‖γ̈(t)‖2dt

(in the appropriate function space) are known as cubic splines. For the case where M is a non-
linear manifold, several results on interpolation can be found in the literature. Crouch and Silva
Leite [CS91, CS95] generalized cubic splines to Riemannian manifolds, defined as curves γ that
minimize, under interpolation conditions, the function

1

2

∫ tN

t1

〈

D2γ

dt2
(t),

D2γ

dt2
(t)

〉

γ(t)

dt,

where D2γ
dt2 denotes the (Levi-Civita) second covariant derivative and 〈·, ·〉x stands for the Rie-

mannian metric on M at x. They gave a necessary condition for optimality in the form of a
fourth-order differential equation, which generalizes a result of Noakes et al. [NHP89]. Splines
of class Ck were generalized to Riemannian manifolds by Camarinha et al. [CSC95]. Still in the
context of interpolation on manifolds, but without a variational interpretation, we mention the
literature on splines based on generalized Bézier curves, defined by a generalization to manifolds
of the de Casteljau algorithm; see [CKS99, Alt00, PN07]. Recently, Jakubiak et al. [JSR06] pre-
sented a geometric two-step algorithm to generate splines of an arbitrary degree of smoothness
in Euclidean spaces, then extended the algorithm to matrix Lie groups and applied it to generate
smooth motions of 3D objects.

Another approach to interpolation on manifolds consists of mapping the data points onto
the tangent space at a particular point of M, then computing an interpolating curve in the
tangent space, and finally mapping the resulting curve back to the manifold. The mapping can
be defined, e.g., by a rolling procedure, see [HS07, KDL07].

Yet another approach, that we focus on in this work, consists in optimizing (1.2) directly
without constraints on γ other than differentiability conditions. While the concept is well known
in R

n, its generalization to Riemannian manifolds is more recent.

In [MSH06], the objective function is defined by equation (1.2) with µ = 0, over the class of
all piecewise smooth curves γ : [0, 1] → M, where λ (> 0) is a smoothing parameter. Solutions
to this variational problem are piecewise smooth geodesics that best fit the given data. As shown
in [MSH06], when λ goes to +∞, the optimal curve converges to a single point which, for certain

8 CHAPTER 1. DISCRETE CURVE FITTING IN R
N

classes of manifolds, is shown to be the Riemannian mean of the data points. When λ goes to
zero, the optimal curve goes to a broken geodesic on M interpolating the data points.

In [MS06], the objective function is defined by equation (1.2) with λ = 0, over a certain set of
admissible C2 curves. The authors give a necessary condition of optimality that takes the form
of a fourth-order differential equation involving the covariant derivative and the curvature tensor
along with certain regularity conditions at the time instants ti, i = 1, . . . , N [MS06, Th. 4.4].
The optimal curves are approximating cubic splines: they are approximating because in general
γ(ti) differs from pi, and they are cubic splines because they are obtained by smoothly piecing
together segments of cubic polynomials on M, in the sense of Noakes et al. [NHP89]. It is
also shown in [MS06, Prop. 4.5] that, as the smoothing parameter µ goes to +∞, the optimal
curve converges to the best least-squares geodesic fit to the data points at the given instants of
time. When µ goes to zero, the approximating cubic spline converges to an interpolating cubic
spline [MS06, Prop. 4.6].

In summary, while the concept of smoothing spline has been satisfactorily generalized to
Riemannian manifolds, the emphasis has been laid on studying properties of these curves rather
than on proposing efficient methods to compute them. In this work, we focus on computing
discrete representations of such curves.

Chapter 2

Elements of Riemannian

geometry

In the first chapter, we showed how easily the discrete regression problem can be stated and
solved in a vector space. We then made a few statements about where that structure is used and
what needs to be done to generalize the concepts to other spaces.

In this chapter, we give a brief overview of some Riemannian geometry elements. We start by
giving a proper definition of manifolds as sets accompanied by atlases, which are sets of charts.
We will not explicitly use charts in our applications. However, defining charts and atlases is a
necessary effort to build the higher level tools we do use later on. Loosely, manifolds are sets
that locally resemble R

n. Charts are the mathematical concept that embody this idea. At each
point of a manifold we can define a vector space, called the tangent space, that captures this
essential property. Inner products are then defined as positive-definite forms on each tangent
space. Considering spaces where these inner products vary continuously on the manifold leads
to the concept of Riemannian manifolds. Using these inner products we give a natural definition
of distance between points and gradients of real-valued functions on the manifold. Subsequently,
the exponential and logarithmic maps are introduced. They are the key concepts that, later on,
will enable us to generalize finite differences and descent methods for optimization. Finally, we
introduce parallel translation, which is the tool that lets us compare tangent vectors rooted at
different points of a manifold.

Should you not be familiar with this material, we suggest you think of the general manifold
M used henceforth simply as the sphere. It is also helpful to think about how the concepts
specialize in the case of R

n. This chapter is mainly based on [AMS08, Hai09, Boo86]. All the
(beautiful) figures come from the book [AMS08] by Absil et al. I thank the authors for them.

9

10 CHAPTER 2. ELEMENTS OF RIEMANNIAN GEOMETRY

2.1 Charts and manifolds

In this document, we are mainly concerned with embedded Riemannian manifolds (we will define
these terms shortly). Nevertheless, it is important to give a proper definition of smooth manifolds
first. Intuitively, manifolds are sets that can be locally identified with patches of R

n. These
identifications are called charts. A set of charts that covers the whole set is called an atlas for
the set. The set and the atlas together constitute a manifold. More formally:

Definition 2.1.1 (chart). Let M be a set. A chart of M is a pair (U,ϕ) where U ⊂ M and ϕ
is a bijection between U and an open set of R

n. U is the chart’s domain and n is the chart’s
dimension. Given p ∈ U , the elements of ϕ(p) = (x1, . . . , xn) are called the coordinates of p in
the chart (U,ϕ).

Definition 2.1.2 (compatible charts). Two charts (U,ϕ) and (V, ψ) of M , of dimensions n and
m respectively, are smoothly compatible (C∞−compatible) if either U ∩V = ∅ or U ∩V 6= ∅ and

• ϕ(U ∩ V) is an open set of R
n,

• ψ(U ∩ V) is an open set of R
m,

• ψ ◦ ϕ−1 : ϕ(U ∩ V) → ψ(U ∩ V) is a smooth diffeomorphism (i.e., a smooth invertible
function with smooth inverse).

When U ∩ V 6= ∅, the latter implies n = m.

V

U

R
n

ψ(V)

ϕ ψ

R
n

ϕ(U)
ϕ ◦ ψ−1

ψ ◦ ϕ−1

ϕ(U ∩ V)

ψ(U ∩ V)

Figure 2.1: Charts. Figure courtesy of Absil et al., [AMS08].

Definition 2.1.3 (atlas). A set A of pairwise smoothly compatible charts {(Ui, ϕi), i ∈ I} such
that ∪i∈IUi = M is a smooth atlas of M .

Two atlases A1 and A2 are compatible if A1 ∪ A2 is an atlas. Given an atlas A, one can
generate a unique maximal atlas A+. Such an atlas contains A as well as all the charts compatible
with A. Classically, we define:

Definition 2.1.4 (manifold). A smooth manifold is a pair M = (M,A+), where M is a set
and A+ is a maximal atlas of M .

Example 2.1.5. The vector space R
n can be endowed with an obvious manifold structure. Simply

consider M = (Rn,A+) where the atlas A+ contains the identity map (Rn, ϕ), ϕ : U = R
n →

R
n : x 7→ ϕ(x) = x. Defined as such, M is called a Euclidean space. We always use the notation

R
n regardless of whether we consider the vector space or the Euclidean space.

Often times, we will refer to M when we really mean M and vice versa. Once the differential
manifold structure is clearly stated, no confusion is possible. For example, the notation M ⊂ R

n

means M ⊂ R
n.

2.2. TANGENT SPACES AND TANGENT VECTORS 11

Definition 2.1.6 (dimension). Given a manifold M = (M,A+), if all the charts of A+ have
the same dimension n, we call n the dimension of the manifold.

We need one last definition to assess smoothness of curves defined on manifolds:

Definition 2.1.7 (smooth mapping). Let M and N be two smooth manifolds. A mapping
f : M → N is of class Ck if, for all p in M, there is a chart (U,ϕ) of M and (V, ψ) of N such
that p ∈ U , f(U) ⊂ V and

ψ ◦ f ◦ ϕ−1 : ϕ(U) → ψ(V)

is of class Ck. The latter is called the local expression of f in the charts (U,ϕ) and (V, ψ). It
maps open sets of R

n, hence all classic tools apply.

This definition does not depend on the choice of charts.

In the next section, we introduce tangent spaces and tangent vectors. Those are objects that
give a local representation of manifolds as vector spaces.

2.2 Tangent spaces and tangent vectors

As is customary in differential geometry, we will define tangent vectors as equivalence classes of
functions. This surprising detour from the very simple idea underlying tangent vectors (namely
that they point in directions one can follow at a given point on a manifold), once again, comes
from the lack of a vector space structure. We first construct a simpler definition. In R

n, one can
define derivatives for curves c : R → R

n:

c′(0) := lim
t→0

c(t) − c(0)

t
.

The difference appearing in the numerator does not, in general, make sense for manifolds. For
manifolds embedded in R

n however (like, e.g., the sphere), we can still make sense of the definition
with the appropriate space identifications. A simple definition of tangent spaces in this setting
follows.

Definition 2.2.1 (tangent spaces for manifolds embedded in R
n). Let M ⊂ R

n be a smooth
manifold. The tangent space at x ∈ M, noted TxM, is the vector subspace of R

n defined by:

TxM = {v ∈ R
n : v = c′(0) for some smooth c : R → M such that c(0) = x} .

The dimension of TxM is the dimension of a chart of M containing x.

The following theorem is useful when dealing with such manifolds defined by equality con-
straints on the Cartesian coordinates.

Theorem 2.2.2. Let M be a subset of R
n. (1) and (2) are equivalent:

(1) M is a smooth submanifold of R
n of dimension n−m,

(2) For all x ∈ M, there is an open set V of R
n containing x and a smooth function f : V →

R
m such that the differential dfx : R

n → R
m has rank m and V ∩M = f−1(0).

Furthermore, the tangent space at x is given by TxM = ker dfx.

We did not define the term submanifold properly. Essentially, (1) means that M is a manifold
endowed with the differential structure naturally inherited from R

n.

Example 2.2.3. An example of a smooth, two-dimensional submanifold of R
3 is the sphere

S
2 = {x ∈ R

3 : xTx = 1}. Use f : R
3 → R : x 7→ f(x) = xTx− 1 in theorem 2.2.2. The tangent

spaces are then TxS
2 = {v ∈ R

3 : vTx = 0}. We illustrate this on figure 2.2.

12 CHAPTER 2. ELEMENTS OF RIEMANNIAN GEOMETRY

S
2

c(t)

x = c(0) c′(0)

Figure 2.2: Tangent space on the sphere. Since S
2 is an embedded submanifold of R

3, the tangent space

TxS
2 can be pictured as the plane tangent to the sphere at x, with origin at x. Figure courtesy of Absil

et al., [AMS08].

In general, M is not embedded in R
n. We now give a more general definition of tangent

vectors that does not need the manifold to be embedded in a vector space. Let M be a smooth
manifold and p be a point on M. We define:

Cp = {c : I → M : c ∈ C1, 0 ∈ I an open interval in R, c(0) = p},

the set of differentiable curves on M passing through p at t = 0. Here, c ∈ C1 is to be understood
with the definition 2.1.7, with the obvious manifold structure on open intervals of R derived from
example 2.1.5. We define an equivalence relation on Cp, noted ∼. Let (U,ϕ) be a chart of M
such that p ∈ U , and let c1, c2 ∈ Cp. Then, c1 ∼ c2 if and only if ϕ ◦ c1 and ϕ ◦ c2 have same
derivative at 0, i.e.:

c1 ∼ c2 ⇔ d

dt
ϕ(c1(t))

∣

∣

∣

∣

t=0

=
d

dt
ϕ(c2(t))

∣

∣

∣

∣

t=0

.

It is easy to prove that this is independent of the choice of chart.

Definition 2.2.4 (tangent space, tangent vector). The tangent space to M at p, noted TpM,
is the quotient space:

TpM = Cp/ ∼
Given c ∈ Cp, the equivalence class [c] is an element of TpM that we call a tangent vector to M
at p.

The mapping

θϕ
p : TpM → R

n : [c] 7→ θϕ
p ([c]) =

d

dt
ϕ(c(t))

∣

∣

∣

∣

t=0

is bijective and naturally defines a vector space structure over TpM. This structure, again, is
independent of the chart. When M ⊂ R

n, it is possible to build a vector space isomorphism
(i.e., an invertible linear map) proving that the two definitions 2.2.1 and 2.2.4 are, essentially,
equivalent.

Definition 2.2.5 (tangent bundle). Let M be a smooth manifold. The tangent bundle, noted
TM, is the set:

TM =
∐

p∈M

TpM,

where
∐

stands for disjoint union. We define π as the natural projection on the roots of vectors,
i.e., π(ξ) = p if and only if ξ ∈ TpM.

The tangent bundle is itself a manifold. This enables us to define vector fields on manifolds
as smooth mappings.

2.3. INNER PRODUCTS AND RIEMANNIAN MANIFOLDS 13

Definition 2.2.6 (vector field). A vector field is a smooth mapping from M to TM such that
π ◦X = Id, the identity map. The vector at p will be written as Xp or X(p) and lies in TpM.

An important example of a vector field is the gradient of a scalar field on a manifold, which
we will define later on and extensively use in our optimization algorithms.

Let us introduce an alternative notation for tangent vectors to curves (velocity vectors) that
will make things look more natural in the sequel. Given a curve of class C1, γ : [a, b] → M, and
t ∈ [a, b], define another such curve on M:

γt : [a− t, b− t] → M : τ 7→ γt(τ) = γ(t+ τ).

This curve is such that γt(0) = γ(t) , p. [γt] ∈ TpM is a vector tangent to γ at time t. We
propose to write

γ̇(t) , [γt].

When using definition 2.2.1, γ̇(t) is identified with γ′(t). This notation has the advantage of
capturing the nature of this vector (a velocity vector).

2.3 Inner products and Riemannian manifolds

Exploiting the vector space structure of tangent spaces, we define inner products as follows:

Definition 2.3.1 (inner product). Let M be a smooth manifold and fix p ∈ M. An inner product
〈·, ·〉p on TpM is a bilinear, symmetric positive-definite form on TpM, i.e., ∀ξ, ζ, η ∈ TpM,
a, b ∈ R:

• 〈aξ + bζ, η〉p = a 〈ξ, η〉p + b 〈ζ, η〉p,

• 〈ξ, ζ〉p = 〈ζ, ξ〉p,

• 〈ξ, ξ〉p ≥ 0, 〈ξ, ξ〉p = 0 ⇔ ξ = 0.

Often, when it is clear from the context that ξ and η are rooted at p, i.e., ξ, η ∈ TpM, we

write 〈ξ, η〉 instead of 〈ξ, η〉p. The norm of a tangent vector ξ ∈ TpM is ‖ξ‖p =
√

〈ξ, ξ〉p.

Let M be a smooth manifold of dimension n and p be a point on M. Let (U,ϕ) be a
chart of M such that p ∈ U . Let (e1, . . . , en) be a basis of R

n. We define the tangent vectors
Ei = (θϕ

p)−1(ei) for i ranging from 1 to n. We state that every vector ξ ∈ TpM can be uniquely

decomposed as ξ =
∑n

i=1 ξ
iEi, i.e., (E1, . . . , En) is a basis of TpM. Now using the inner product

of definition 2.3.1, we define gij = 〈Ei, Ej〉p. Hence, decomposing ζ =
∑n

i=1 ζ
iEi like we did for

ξ, we have:

〈ξ, ζ〉p =

n
∑

i=1

n
∑

j=1

gijξ
iζj = ξ̂TGpζ̂,

where we defined the vectors ξ̂ = (ξ1, . . . , ξn)T , ζ̂ = (ζ1, . . . , ζn)T and the matrix Gp such that
(Gp)ij = 〈Ei, Ej〉p. The matrix Gp is symmetric, positive-definite.

Definition 2.3.2 (Riemannian manifold). A Riemannian manifold is a pair (M, g), where M
is a smooth manifold and g is a Riemannian metric. A Riemannian metric is a smoothly varying
inner product defined on the tangent spaces of M, i.e., for each p ∈ M, gp(·, ·) is an inner
product on TpM.

In this definition, smoothly varying means that the functions (Gp)ij , which are functions
from U to R, are smooth, in the sense described in definition 2.1.7, with the obvious manifold
structure on R.

As is customary, we will often refer to a Riemannian manifold (M, g) simply as M, when
the metric is clear from the context. From now on, when we quote the term manifold, unless
otherwise stated, we refer to a smooth, finite-dimensional Riemannian manifold.

14 CHAPTER 2. ELEMENTS OF RIEMANNIAN GEOMETRY

2.4 Scalar fields on manifolds and the gradient vector field

Let M be a smooth manifold. A scalar field on M is a smooth function f : M → R. We now
generalize the concept of directional derivatives to scalar fields on manifolds.

Definition 2.4.1 (directional derivative). The directional derivative of a scalar field f on M
at p ∈ M in the direction ξ = [c] ∈ TpM is the scalar:

Df(p)[ξ] =
d

dt
f(c(t))

∣

∣

∣

∣

t=0

It is easily checked that this definition does not depend on the choice of c, the representative
of the equivalence class ξ. In the above notation, the brackets around ξ are a convenient way
of denoting that ξ is the direction. They do not mean that we are considering some sort of
equivalence class of ξ (that would not make sense).

The following definition is of major importance for our purpose. It generalizes gradients of
scalar fields to manifolds.

Definition 2.4.2 (gradient). Let f be a scalar field on a smooth, finite-dimensional Riemannian
manifold M. The gradient of f at p, denoted by gradf(p), is defined as the unique element of
TpM satisfying:

Df(p)[ξ] = 〈grad f(p), ξ〉p , ∀ξ ∈ TpM
Thus, gradf : M → TM is a vector field on M.

For a scalar field f on a Euclidean space, grad f is the usual gradient, which we note ∇f . Re-
markably, and similarly to the Euclidean case, the gradient defined above is the steepest-ascent
vector field and the norm ‖ gradf(p)‖p is the steepest slope of f at p.

Based on this definition, one way to derive an expression for the gradient of a scalar field f is
to work out an expression for the directional derivative of f , according to definition 2.4.1, then
to write it as an inner product suitable for direct identification. That might not be practical.
Theorem 2.4.5 provides an alternative, often shorter, way for Riemannian submanifolds of Eu-
clidean spaces. The proof was derived independently but undoubtedly resembles existing proofs.
We first need a definition.

Definition 2.4.3 (Riemannian submanifold). A Riemannian submanifold M of R
n is a sub-

manifold of R
n (as indirectly defined by theorem 2.2.2) equipped with the Riemannian metric

inherited from R
n, i.e., the metric on M is obtained by restricting the metric on R

n to M.

Riemannian submanifolds of R
n are quite common and easy to picture. In particular, since

such manifolds are embedded in R
n, following definition 2.2.1, the tangent space TxM is a vector

subspace of R
n. We can thus define (unique) orthogonal projectors

Px : R
n → TxM : v 7→ Pxv, and

P⊥
x : R

n → T⊥
x M : v 7→ P⊥

x v

such that v = Pxv + P⊥
x v. This follows from the direct sum decomposition R

n = TxM⊕ T⊥
x M.

Example 2.4.4 (continued from example 2.2.3). The Riemannian metric on the sphere is ob-
tained by restricting the metric on R

3 to S
2. Hence, for x ∈ S

2 and v1, v2 ∈ TxS
2, 〈v1, v2〉x =

vT
1 v2. The orthogonal projector on the tangent space TxS

2 is Px = I − xxT .

Theorem 2.4.5. Let M ⊂ R
n be a Riemannian submanifold of R

n equipped with the inner
product 〈·, ·〉 and let f : R

n → R be a smooth scalar field. Let f = f
∣

∣

M
be the restriction from f

to M. Then:

gradf : M → TM : x 7→ gradf(x) = Px∇f(x),

where Px is the orthogonal projector from R
n onto TxM.

2.5. CONNECTIONS AND COVARIANT DERIVATIVES 15

Proof. Let x ∈ M. For all v ∈ TxM, consider a smooth curve cv : R → M such that cv(0) = x
and c′v(0) = v. Then, by definition 2.4.1:

Df(x)[v] =
d

dt
f(cv(t))

∣

∣

∣

∣

t=0

=
d

dt
f(cv(t))

∣

∣

∣

∣

t=0

=
〈

∇f(x), c′v(0)
〉

Decompose the gradient in its tangent and normal components:

=
〈

Px∇f(x) + P⊥
x ∇f(x), v

〉

v is a tangent vector, hence:

=
〈

Px∇f(x), v
〉

The result follows immediately from definition 2.4.2.

2.5 Connections and covariant derivatives

Let M be a Riemannian manifold and X,Y be vector fields on M. We would like to define the
derivative of Y at x in the direction Xx. If M were a Euclidean space, we would write:

DY (x)[Xx] = lim
t→0

Y (x+ tXx) − Y (x)

t

Of course, when M is not a vector space, the above equation does not make sense because x+tXx

is undefined. Furthermore, even if we give meaning to this sum - and we will in section 2.7 -
Y (x+ tXx) and Y (x) would not belong to the same vector spaces. Hence their difference would
be undefined too.

To overcome these difficulties, we need the concept of connection. This can be generically
defined for manifolds. Since we are mainly interested in Riemannian manifolds, we focus on the
so called Riemannian, or Levi-Civita connections. The derivatives defined via these connections
are notably interesting because they give a coordinate-free means of defining acceleration along
a curve (i.e., the derivative of the velocity vector) as well as the Hessian of a scalar field (i.e., the
derivative of the gradient vector field). By coordinate-free, we mean that the choice of charts is
made irrelevant.

We now quickly go over the definition of affine connection for manifolds and the Levi-Civita
theorem, specific to Riemannian manifolds. We then show a result for Riemannian submanifolds
and promptly specialize it to submanifolds of Euclidean spaces. The latter is the important
result for our study and comes in a simple form. The reader can safely skim through the
technical definitions that we have to introduce in order to get there.

Definition 2.5.1 (affine connection). Let X (M) denote the set of smooth vector fields on M
and F(M) denote the set of smooth scalar fields on M. An affine connection ∇ on a manifold
M is a mapping

∇ : X (M) × X (M) → X (M)

which is denoted by (X,Y) 7→ ∇XY and satisfies the following properties:

(1) F(M)-linearity in X: ∇fX+gY Z = f∇XZ + g∇Y Z,

(2) R-linearity in Y : ∇X(aY + bZ) = a∇XY + b∇XZ,

(3) Product rule (Leibniz’ law): ∇X(fY) = (Xf)Y + f∇XY ,

in which X,Y, Z ∈ X (M), f, g ∈ F(M) and a, b ∈ R. We have used a standard interpretation
of vector fields as derivations on M. The notation Xf stands for a scalar field on M such
that Xf(p) = Df(p)[Xp]. The above properties should be compared to the usual properties

16 CHAPTER 2. ELEMENTS OF RIEMANNIAN GEOMETRY

of derivations in R
n. Every smooth manifold admits infinitely many affine connections. This

approach is called an axiomatization: we state the properties we desire in the definition, then
only investigate whether such objects exist.

Definition 2.5.2 (covariant derivative). The vector field ∇XY is called the covariant derivative
of Y with respect to X for the affine connection ∇.

Essentially, at each point p ∈ M, ∇XY (p) is a vector telling us how the vector field Y is
changing in the direction Xp. This interpretation shows that it is non-essential that the vector
fields X and Y be defined over all of M. We can define covariant derivatives along curves.
Typically, Y would be defined on the trajectory of a curve γ and the derivative direction Xγ(t)

would be equal to γ̇(t), the tangent vector to the curve at γ(t), i.e., the velocity vector.

The following example shows a natural affine connection in Euclidean space.

Example 2.5.3. In R
n, the classical directional derivative defines an affine connection:

(∇XY)x = lim
t→0

Y (x+ tXx) − Y (x)

t
= DY (x)[Xx]

This should give us confidence that the definition 2.5.1 is a good definition. As often, the
added structure of Riemannian manifolds makes for stronger results. The Levi-Civita theorem
singles out one particular affine connection for each Riemannian manifold.

Theorem 2.5.4 (Levi-Civita). On a Riemannian manifold M there exists a unique affine con-
nection ∇ that satisfies

(1) ∇XY −∇Y X = [X,Y] (symmetry), and

(2) Z 〈X,Y 〉 = 〈∇ZX,Y 〉 + 〈X,∇ZY 〉 (compatibility with the Riemannian metric),

for all X,Y, Z ∈ X (M). This affine connection is called the Levi-Civita connection or the
Riemannian connection.

In the above definition, we used the notation [X,Y] for the Lie bracket of X and Y , which is
a vector field defined by [X,Y]f = X(Y f)−Y (Xf), ∀f ∈ F(M), again using the interpretation
of vector fields as derivations. Not surprisingly, the connection exposed in example 2.5.3 is the
Riemannian connection on Euclidean spaces. We always assume that the Levi-Civita connection
is the one we use. The next theorem is an important result about the Riemannian connection
of a submanifold of a Riemannian manifold taken from [AMS08]. This situation is illustrated on
figure 2.3.

X

∇XX

M

M

Figure 2.3: Riemannian connection ∇ in a Euclidean space M applied to a tangent vector field X to

a circle. We observe that ∇XX is not tangent to the circle, hence simply restricting ∇ to the circle is

not an option. As theorem 2.5.5 shows, we need to project (∇XX)x on the tangent space TxM to obtain

(∇XX)x. Figure courtesy of Absil et al., [AMS08].

Theorem 2.5.5. Let M be a Riemannian submanifold of a Riemannian manifold M and let ∇
and ∇ denote the Riemannian connections on M and M. Then,

(∇XY)p = Pp(∇XY)p

for all Xp ∈ TpM and Y ∈ X (M).

2.6. DISTANCES AND GEODESIC CURVES 17

In particular, for Euclidean spaces (example 2.5.3),

(∇XY)x = Px(DY (x)[Xx]) (2.1)

This means that the Riemannian connection on M can be computed via a classical directional
derivative in the embedding space followed by a projection on the tangent space. Equation (2.1)
is the most important result of this section. It gives us a practical means of computing derivatives
of vector fields on the sphere for example, which is useful in chapter 4.

The acceleration along a curve can now be defined.

Definition 2.5.6 (acceleration along a curve). Let γ : R → M be a C2 curve on M. The
acceleration along γ is given by:

D2

dt2
γ(t) =

D

dt
γ̇(t) = ∇γ̇(t)γ̇(t).

In the above equation, we abused the notation for γ̇ which is tacitly supposed to be smoothly
extended to a vector field X ∈ X (M) such that Xγ(t) = γ̇(t). For submanifolds of Euclidean
spaces, by equation (2.1) and using definition 2.2.1 for tangent vectors, this reduces to:

D2

dt2
γ(t) = Pγ(t)

d2

dt2
γ(t).

An axiomatic version of this definition is given in [AMS08, p. 102]. It has the added advantage
of showing linearity of the operator D

dt as well as a natural product and composition rule.

2.6 Distances and geodesic curves

The availability of inner products on the tangent spaces makes for an easy definition of curve
length and distance.

Definition 2.6.1 (length of a curve). The length of a curve of class C1, γ : [a, b] → M, on a
Riemannian manifold (M, g), with 〈ξ, η〉p , gp(ξ, η), is defined by

L(γ) =

∫ b

a

√

〈γ̇(t), γ̇(t)〉γ(t) dt =

∫ b

a

‖γ̇(t)‖γ(t) dt.

If M is embedded in R
n, γ̇(t) can be replaced by γ′(t), where γ is considered to be a function

from [a, b] to R
n and with the right definition of g.

Definition 2.6.2 (Riemannian distance). The Riemannian distance (or geodesic distance) on
M is given by:

dist : M×M → R
+ : (p, q) 7→ dist (p, q) = inf

γ∈Γ
L(γ),

where Γ is the set of all C1 curves γ : [0, 1] → M such that γ(0) = p and γ(1) = q.

Under very reasonable conditions (see [AMS08, p. 46]), one can show that the Riemannian
distance defines a metric. The definition above captures the idea that the distance between
two points is the length of the shortest path joining these two points. In a Euclidean space,
such a path would simply be the line segment joining the points. Another characteristic of line
segments seen as curves with arclength parameterization is that they have zero acceleration.
The next definition generalizes the concept of straight lines, preserving this zero acceleration
characteristic, to Riemannian manifolds.

Definition 2.6.3 (geodesic curve). A curve γ : R → M is a geodesic curve if and only if
D2

dt2 γ(t) ≡ 0, i.e., if it has zero acceleration on all its domain.

For close points, geodesic curves are shortest paths. It is not true for any two points on
a geodesic though. Indeed, think of two points on the equator of the unit sphere in R

3. The
equator itself, parameterized by arclength, is a geodesic. Following this geodesic, one can join
the two points via a path of length r or a path of length 2π− r. Unless r = π, one of these paths
is bound to be suboptimal.

18 CHAPTER 2. ELEMENTS OF RIEMANNIAN GEOMETRY

2.7 Exponential and logarithmic maps

Exponentials are mappings that, given a point x on a manifold and a tangent vector ξ at x,
generalize the concept of “x + ξ”. In a Euclidean space, the sum x + ξ is a point in space that
can be reached by leaving x in the direction ξ. With exponentials, Expx (ξ) is a point on the
manifold that can be reached by leaving x and moving in the ξ direction while remaining on the
manifold. Furthermore, the trajectory followed is a geodesic (zero acceleration) and the distance
traveled equals the norm of ξ.

Definition 2.7.1 (exponential map). Let M be a Riemannian manifold and x ∈ M. For every
ξ ∈ TxM, there exists an open interval I 3 0 and a unique geodesic γ(t;x, ξ) : I → M such that
γ(0) = x and γ̇(0) = ξ. Moreover, we have the homogeneity property γ(t;x, aξ) = γ(at;x, ξ).
The mapping

Expx : TxM → M : ξ → Expx (ξ) = γ(1;x, ξ)

is called the exponential map at x. In particular, Expx (0) = x, ∀x ∈ M.

Exponentials can be expensive to compute. The following concept, retractions, has a simpler
definition that captures the most important aspects of exponentials as far as we are concerned.
Essentially, we drop the requirement that the trajectory by a geodesic, as well as the equality
between distance traveled and ‖ξ‖. It was introduced by Absil et al. in [AMS08]. Figure 2.4
illustrates the concept.

x

M

TxM

Rx (ξ)

ξ

Figure 2.4: Retraction. Figure courtesy of Absil et al., [AMS08].

Definition 2.7.2 (retraction). A retraction on a manifold M is a smooth mapping R from the
tangent bundle TM onto M with the following properties. Let Rx denote the restriction of R to
TxM.

(1) Rx (0) = x, where 0 is the zero element of TxM.

(2) The differential (DRx)0 : T0(TxM) ≡ TxM → TxM is the identity map on TxM,
(DRx)0 = Id (local rigidity).

Equivalently, the local rigidity condition can be stated as: ∀ξ ∈ TxM, the curve γξ : t 7→
Rx (tξ) satisfies γ̇ξ(0) , [γξ] = ξ. In particular, an exponential map is a retraction. One can
think of retractions as mappings that share the important properties we need with the exponen-
tial map, while being defined in a flexible enough way that we will be able to propose retractions
that are, computationally, cheaper than exponentials. Retractions are the core concept needed
to generalize descent algorithms to manifolds, see sections 3.4 and 3.5.

A related concept is the logarithmic map. Not surprisingly, it is defined as the inverse mapping
of the exponential map. For two points x and y, logarithms generalize the concept of “y − x”.

2.7. EXPONENTIAL AND LOGARITHMIC MAPS 19

Definition 2.7.3 (logarithmic map). Let M be a Riemannian manifold. We define

Logx : M → TxM : y 7→ Logx (y) = ξ, such that Expx (ξ) = y and ‖ξ‖x = dist (x, y) .

Given a root point x and a target point y, the logarithmic map returns a tangent vector at
x pointing toward y and such that ‖Logx (y) ‖ = dist (x, y). As is, this definition is not perfect.
There might indeed be more than one eligible ξ. For example, think of the sphere S

2 and place
x and y at the poles: for any vector η ∈ TxS

2 such that ‖η‖ = π, we have Expx (η) = y. For a
more careful definition of the logarithm, see, e.g., [dC92]. As long as x and y are not “too far
apart”, this definition is satisfactory. Again, computing this map can be computationally expen-
sive. Plus, we will need to differentiate it with respect to x and y later on. We pragmatically
introduce, in this work, the notion of generalized logarithm, just like we introduced retractions
as proxies for the exponential.

The inverse function theorem on manifolds can be stated like so, see, e.g., [Boo86].

Theorem 2.7.4 (inverse function theorem). Let M,N be smooth manifolds and let f : M → N
be a smooth function. If the differential of f at x ∈ M,

Dfx : TxM → Tf(x)N ,

is a vector space isomorphism (i.e., an invertible linear map), then there exists an open neigh-
borhood U ⊂ M of x such that the restriction

f |U : U → f(U)

is a diffeomorphism (i.e., a smooth invertible function with smooth inverse). Furthermore, writ-
ing g = f |U , (Dg−1)g(x) = (Dgx)−1.

Let us consider a retraction R on a smooth manifold M and let us consider a point x ∈ M.
The map

Rx : TxM → M
is a smooth function from M to the smooth manifold TxM. Furthermore, according to the
definition 2.7.2 for retractions, the differential

(DRx)0 : T0(TxM) ≡ TxM → TxM

is the identity map Id on TxM which, of course, is a vector space isomorphism. By the inverse
function theorem, there exists a neighborhood U ⊂ TxM of 0, and a smooth function

Lx : Rx (U) ⊂ M → U

such that Lx(Rx (ξ)) = ξ, ∀ξ ∈ U . In particular, Lx(x) = 0 since Rx (0) = x. Since Id−1 = Id,
we also have that the differential

(DLx)x : TxM → T0(TxM) ≡ TxM

is the identity map on TxM. We introduce a new definition for the purpose of this work.

Definition 2.7.5 (generalized logarithms). A generalized logarithm is a smooth mapping L from
M×M to TM with the following properties. Let Lx : M → TxM denote the restriction from
L to {x} ×M, with x ∈ M.

(1) Lx (x) = 0, where 0 is the zero element of TxM.

(2) The differential (DLx)x : TxM → T0(TxM) ≡ TxM is the identity map on TxM,
(DLx)x = Id.

20 CHAPTER 2. ELEMENTS OF RIEMANNIAN GEOMETRY

Based on the considerations above, generalized logarithms can be constructed as extensions
of local inverses of retractions. In particular, we can think of Log as a generalized logarithm
constructed from the retraction Exp.

Let us exhibit another way of constructing generalized logarithms on a smooth manifold M.
Given x ∈ M and a smooth scalar field fx : M → R, let us consider the smooth map

Lx : M → TxM : y 7→ Lx(y) = fx(y) · Logx (y) .

Exploiting the fact that Log is a generalized logarithm, we verify that Lx(x) = 0 and that

(DLx)x = fx(x) · (DLogx)(x) + Logx (x) · Dfx(x) = fx(x) · Id

is the identity map on TxM if and only if fx(x) = 1. Hence, when Logx (y) admits an expression
in the form of a vector scaled by a complicated non-linear function, a generalized logarithm may
sometimes be constructed by (carefully) getting rid of the scaling factor. We do this for the
sphere in section 4.1.

2.8 Parallel translation

In Euclidean spaces, it is natural to compare vectors rooted at different points in space, so much
that the notion of root of a vector is utterly unimportant. On manifolds, each tangent vector
belongs to a tangent space specific to its root point. Vectors from different tangent spaces cannot
be compared immediately. We need a mathematical tool capable of transporting vectors between
tangent spaces while retaining the information they contain.

The proper tool from differential geometry for this is called parallel translation. Let us con-
sider two points x, y ∈ M, a vector ξ ∈ TxM and a curve γ on M such that γ(0) = x and
γ(1) = y. We introduce X , a vector field defined along the trajectory of γ and such that Xx = ξ
and ∇γ̇(t)X(γ(t)) ≡ 0. We say that X is constant along γ. The transported vector is Xy; it
depends on γ.

In general, computing Xy requires one to solve a differential equation on M. Just like we
introduced retractions as a simpler proxy for exponentials and generalized logarithms for log-
arithms, we now introduce the concept of vector transport as a proxy for parallel translation.
Again, this concept was first described by Absil et al. in [AMS08].

Roughly speaking, the notion of vector transport tells us how to transport a vector ξ ∈ TxM
from a point x ∈ M to a point Rx (η) ∈ M, η ∈ TxM. We first introduce the Whitney sum then
quote the definition of vector transport.

TM⊕ TM = {(η, ξ) : η, ξ ∈ TxM, x ∈ M}

Hence TM⊕ TM is the set of pairs of tangent vectors belonging to a same tangent space. In
the next definition, one of them will be the vector to transport and the other will be the vector
along which to transport. This definition is illustrated on figure 2.5.

Definition 2.8.1 (vector transport). A vector transport on a manifold M is a smooth mapping

TM⊕ TM → TM : (η, ξ) 7→ Tη (ξ) ∈ TM

satisfying the following properties for all x ∈ M:

(1) (associated retraction) There exists a retraction R, called the retraction associated with T,
such that Tη (ξ) ∈ TRx(η)M.

(2) (consistency) T0 (ξ) = ξ for all ξ ∈ TxM.

(3) (linearity) Tη (aξ + bζ) = aTη (ξ) + bTη (ζ) , ∀η, ξ, ζ ∈ TxM, a, b ∈ R

2.8. PARALLEL TRANSLATION 21

x

M

TxM

η

Rx (η)

ξ

Tη (ξ)

Figure 2.5: Vector transport. Figure courtesy of Absil et al., [AMS08].

In the following, we will use this definition to give a geometric version of the non-linear
conjugate gradients method, section 3.5. We give the retraction and the associated transport we
use on the sphere, chapter 4, in the next example taken from [AMS08, p. 172].

Example 2.8.2. A valid retraction on the sphere S
2 is given by:

Rx (v) =
x+ v

‖x+ v‖ .

An associated vector transport is:

Tη (ξ) =
1

‖x+ η‖

(

I − (x + η)(x+ η)T

(x + η)T (x + η)

)

ξ

On the right-hand side, x, η and ξ are to be treated as elements of R
3. The scaling factor is

not critical, according to definition 2.8.1. In our implementation for chapter 4, we chose to
normalize such that ‖Tη (ξ) ‖ = ‖ξ‖.

22 CHAPTER 2. ELEMENTS OF RIEMANNIAN GEOMETRY

Chapter 3

Objective generalization and

minimization

The second chapter gave us useful tools to replace the forbidden linear combinations that appear
in the Euclidean case by reasonable equivalents in the more general setting of manifolds.

In this third chapter, we use these tools to introduce what we call geometric finite differences.
These are then straightforwardly plugged into our original problem objective function to obtain
a generalized objective. In what constitutes a second part of this chapter, we successively give a
quick reminder of the steepest descent method and non-linear conjugate gradient methods for the
minimization of a real valued function in R

n. These reviews are followed by geometric versions,
where we simply replaced every forbidden operation by its geometric counterpart. We close this
chapter with a few suggestions for the step choosing algorithms. These algorithms need not
be adapted, since in both the Euclidean and the Riemannian settings they are concerned with
loosely minimizing real functions of one real variable.

Sadly, the theoretical convergence results we had for these methods in the Euclidean case do
not all hold in our geometric setting, or at least cannot be proven as easily. Still, some useful
results can be found in [AMS08]. As we will see in chapters 4 and 5, numerical results tend to
be reassuring on these matters.

23

24 CHAPTER 3. OBJECTIVE GENERALIZATION AND MINIMIZATION

3.1 Geometric finite differences

We start by considering a smooth function x : R → R
n. We assume that we know x(t) at times

t0, t0 + ∆tf and t0 − ∆tb (the subscripts f and b stand for forward and backward). The goal is
to derive a formula for the velocity ẋ(t0) and the acceleration ẍ(t0) based on these values. As is
customary, we write down the following Taylor expansions of x about t0:

x(t0 + ∆tf) = x(t0) + ∆tf ẋ(t0) +
∆t2f
2
ẍ(t0) + O(∆t3f)

x(t0 − ∆tb) = x(t0) − ∆tbẋ(t0) +
∆t2b
2
ẍ(t0) + O(∆t3b) (3.1)

We introduce some notations here to simplify the expressions:

xf = x(t0 + ∆tf), xb = x(t0 − ∆tb), x0 = x(t0),

ẋ0 = ẋ(t0), ẍ0 = ẍ(t0) and ∆t = max(|∆tf |, |∆tb|).

Rewriting, we get:

xf = x0 + ∆tf ẋ0 +
∆t2f
2
ẍ0 + O(∆t3)

xb = x0 − ∆tbẋ0 +
∆t2b
2
ẍ0 + O(∆t3) (3.2)

This is a linear system in ẋ0 and ẍ0. Solving it yields:

ẋ0 =
1

∆tf + ∆tb

1

∆tf∆tb

[

∆t2b(xf − x0) − ∆t2f (xb − x0)
]

+ O(∆t2)

ẍ0 =
2

∆tf + ∆tb

1

∆tf∆tb
[∆tb(xf − x0) + ∆tf(xb − x0)] + O(∆t) (3.3)

As expected, our formulas are linear combinations of the values xb, x0 and xf . Arbitrary linear
combinations do not, in general, make sense on manifolds, since manifolds do not, in general,
have a vector space structure. However, we have assembled the terms of (3.3) in such a way that
the differences xf − x0 and xb − x0 are apparent. Those may be interpreted as vectors rooted
at x0 and pointing toward, respectively, xf and xb. Using the logarithmic map introduced in
section 2.7, we now propose a generalization of (3.3). We call the following geometric finite
differences:

ẋ0 ≈ 1

∆tf + ∆tb

1

∆tf∆tb

[

∆t2b Logx0
(xf) − ∆t2f Logx0

(xb)
]

ẍ0 ≈ 2

∆tf + ∆tb

1

∆tf∆tb

[

∆tb Logx0
(xf) + ∆tf Logx0

(xb)
]

(3.4)

xb, x0 and xf are now considered to be on a manifold M. The objects ẋ0 and ẍ0 are vectors in
the tangent space Tx0M.

It is interesting to observe that the vector ẍ0 is zero if x(t) is a geodesic curve, which is a
desirable property. The converse is also true, i.e., if ẍ0 = 0, then there exists a geodesic γ(t)
fitting the data. We give an outline of a proof. Simply build γ as follows:

γ(t) =







Expx0

(

t0−t
∆tb

Logx0
(xb)

)

if t < t0,

Expx0

(

t−t0
∆tf

Logx0
(xf)

)

if t ≥ t0.

By construction, γ is a geodesic before and after t0 and is continuous. γ is also globally a
geodesic. Indeed, we can compute the velocity vector γ̇(t0) “coming from the left”:

γ̇(t−0) =
−1

∆tb
Logx0

(xb) ,

3.2. GENERALIZED OBJECTIVE 25

and “coming from the right”:

γ̇(t+0) =
1

∆tf
Logx0

(xf) .

Assuming ẍ0 = 0, these two velocity vectors agree, hence γ is a geodesic.

Similar developments yield unilateral finite differences for end points. Considering x0 = x(t0),
x1 = x(t0 + ∆t1) and x2 = x(t0 + ∆t1 + ∆t2) and defining ∆t = max(|∆t1|, |∆t2|), we get:

ẋ0 ≈ ∆t1 + ∆t2
∆t1∆t2

Logx0
(x1) −

∆t1
∆t2(∆t1 + ∆t2)

Logx0
(x2)

ẍ0 ≈ −2

∆t1∆t2
Logx0

(x1) +
2

∆t2(∆t1 + ∆t2)
Logx0

(x2) (3.5)

Since the formulas for the acceleration are only of order 1, we may as well derive order 1 formulas
for the velocity. Either of the following is fine:

ẋ0 ≈ 1

∆tf
Logx0

(xf)

ẋ0 ≈ −1

∆tb
Logx0

(xb)

We generalized finite differences in a way that makes sense on any smooth manifold equipped
with a logarithm. We built this generalization based on our interpretation of the linear combi-
nations appearing in the classical finite differences used in the discrete objective, equation (1.6).

Instead, we could have tried to directly discretize terms such as D2

dt2 γ(t), appearing in the gener-
alized continuous objective, equation (1.2). In the case of Riemannian submanifolds of R

n, the
definition 2.5.6 for the acceleration would have led us to compute the finite differences in the
ambient space, then project the result back on the tangent space. As it turns out, on the sphere,
this is equivalent to computing the geometric finite differences with a particular generalized
logarithm, definition 2.7.5. We use that generalized logarithm in chapter 4.

3.2 Generalized objective

In section 1.2, we defined an objective function for discrete curve fitting in Euclidean spaces.
Equations (1.3), (1.4) and (1.5) used classical tools such as Euclidean distances and finite differ-
ences, the latter being used to evaluate velocity and acceleration along a discrete curve. We now
have new tools to rewrite these elements in a very similar form:

E(γ) = Ed(γ) + λEv(γ) + µEa(γ) (3.6)

Ed(γ) =
1

2

N
∑

i=1

wi dist2 (pi, γsi
)

Ev(γ) =
1

2

Nd
∑

i=1

αi‖vi‖2
γi

Ea(γ) =
1

2

Nd
∑

i=1

βi‖ai‖2
γi

This time, the data p1, . . . , pN lives on a manifold M. The function E and its components Ed,
Ev and Ea are defined over a curve space Γ = M× . . . ×M, which is simply Nd copies of the
manifold M. It is a product manifold, and as such inherits many of the properties of M. In
particular, if M is finite dimensional, which will always be the case in this document, then so is
Γ. This is useful because the definition of the gradient, definition 2.4.2, applies.

The distance dist (·, ·) is the geodesic distance on M (if available), or a proxy for it. The
tangent vectors for velocity vi and acceleration ai at points γi are computed according to the
formulas given in section 3.1. If the logarithmic map needed for geometric finite differences has

26 CHAPTER 3. OBJECTIVE GENERALIZATION AND MINIMIZATION

a too complicated form, a proxy for it can be used too. If even coming up with a generalized
logarithm proves difficult, one can envision the alternative generalized objectives described in
section 3.3. To the best of our knowledge, this is a novel objective function for the regression
problem on manifolds.

Other generalizations can be proposed. We will discuss some of them in the next section.
Interestingly, these alternative formulations all come down to finite differences in the Euclidean
case, although they may not be equivalent in the general, Riemannian case.

3.3 Alternative discretizations of the objective*

In this optional section, we propose two alternative discretizations of the second order term
in (1.2),

∫ tN

t1

〈

D2γ

dt2
,
D2γ

dt2

〉

γ(t)

dt. (3.7)

The geometric finite differences make for clean developments and can be used to derive higher-
order formulas in a straightforward way. The discretizations we present here are limited to the
second order. As we will see, they both come down to finite differences when specialized to the
Euclidean case, but differ on manifolds. We give explicit formulas on the sphere S

2 to illustrate
this. We introduce S

2 as a manifold in section 4.1. The reader may want to read that section first.

Both our alternatives are based on the idea that (3.7) penalizes departure from straightness.
Let us consider three points on a manifold γ1, γ2 and γ3 associated with times τ1, τ2 and τ3.
Define ∆τ1 = τ2 − τ1 and ∆τ2 = τ3 − τ2. If there was a geodesic γ(t) such that γ(τi) = γi,
∀i ∈ {1, 2, 3} and such that the length of γ between τi and τi+1 equals the geodesic distance
between γi and γi+1, ∀i ∈ {1, 2}, then γ2 would be equal to

γ∗ = Expγ1

(

∆τ1
∆τ1 + ∆τ2

Logγ1
(γ3)

)

,

and γ3 would be equal to

γ? = Expγ1

(

∆τ1 + ∆τ2
∆τ1

Logγ1
(γ2)

)

.

Our first alternative penalizes terms of the form dist2 (γ2, γ∗) whereas our second alternative
penalizes terms of the form dist2 (γ3, γ?). Let us consider ∆τ1 = ∆τ2 , ∆τ for ease of notations.
In this particular case, we could define γ∗ as the mean of γ1 and γ3. Specializing the penalties
to a Euclidean space, we obtain:

dist2 (γ2, γ∗) =

∥

∥

∥

∥

(

γ1 +
1

2
(γ3 − γ1)

)

− γ2

∥

∥

∥

∥

2

=
1

4
‖γ1 − 2γ2 + γ3‖2

dist2 (γ3, γ?) = ‖(γ1 + 2(γ2 − γ1)) − γ3‖2 = ‖γ1 − 2γ2 + γ3‖2

We recognize classical finite differences for acceleration at γ2. Hence, these penalties certainly
make sense -and are equivalent up to a scaling factor- in a Euclidean space. They are not equiv-
alent on the sphere. We show this explicitly.

Let (x, y) 7→ 〈x, y〉 = xT y be our inner product on R
3. When γi ∈ S

2 = {x ∈ R
3 : 〈x, x〉 = 1},

∀i ∈ {1, 2, 3}, γ∗ can be computed as:

γ∗ = mean (γ1, γ3) ,
γ1 + γ3

‖γ1 + γ3‖
=

γ1 + γ3
√

2 (1 + 〈γ1, γ3〉)
.

Since dist2 (x, y) = arccos2(〈x, y〉) on S
2 (see table 4.1), the associated penalty is

dist2 (γ2, γ∗) = arccos2

(

〈γ2, γ1 + γ3〉
√

2 (1 + 〈γ1, γ3〉)

)

.

3.3. ALTERNATIVE DISCRETIZATIONS OF THE OBJECTIVE* 27

This is a rather involved function considering that we will need to differentiate it. We now
compute γ?. The latter is a point on the sphere lying in the plane defined by γ1 and γ2 and such
that the geodesic distance, i.e., the angle between γ1 and γ2 equals the angle between γ2 and γ?.
We can formalize this as:

〈γ?, γ?〉 = 1

γ? = α1γ1 + α2γ2

〈γ1, γ2〉 = 〈γ2, γ?〉

This system in (α1, α2) has two solutions. Either γ? = γ1, which we discard as not interesting,
or:

γ? = 2 〈γ1, γ2〉 γ2 − γ1.

The associated penalty takes the nice form:

dist2 (γ3, γ?) = arccos2 (2 〈γ1, γ2〉 〈γ2, γ3〉 − 〈γ1, γ3〉) .

We would like to exploit this to propose a cheap discretization of (3.7) on S
2 for uniform time

sampling. When consecutive γi’s are close to each other, the geodesic distance can be approxi-
mated by the Euclidean distance in the ambient space R

3. We have:

‖a− b‖2 = 2(1 − 〈a, b〉), a, b ∈ S
2

Using this instead of arccos2(〈a, b〉) (this corresponds to a first order Taylor approximation), we
propose a simple form for Ea on S

2:

Ea =
1

∆τ3

Nd−1
∑

i=2

1 − 2 〈γi−1, γi〉 〈γi, γi+1〉 + 〈γi−1, γi+1〉 (3.8)

We neglected the endpoints, which is not a liability since this formula is intended for fine time
sampling. The 1/∆τ3 factor is explained as follows. In the Euclidean case, the penalty is given
by:

Ea =
1

2

Nd−1
∑

i=2

∆τ

∥

∥

∥

∥

γi+1 − 2γi + γi−1

∆τ2

∥

∥

∥

∥

2

=
1

2

Nd−1
∑

i=2

1

∆τ3
‖γi+1 − 2γi + γi−1‖2

As we showed earlier, in the Euclidean case, dist2 (γ3, γ?) = ‖γ3 − 2γ2 + γ1‖2
, hence we identified

corresponding terms. The derivatives of (3.8), seen as a scalar field in the ambient space R
3×Nd ,

are given by:

∆τ3 ∂Ea

∂γ1
= γ3 − 2 〈γ2, γ3〉 γ2

∆τ3 ∂Ea

∂γ2
= γ4 − 2(〈γ1, γ2〉 + 〈γ3, γ4〉)γ3 − 2 〈γ2, γ3〉 γ1

∆τ3 ∂Ea

∂γk
= γk+2 − 2(〈γk−1, γk〉 + 〈γk+1, γk+2〉)γk+1

+ γk−2 − 2(〈γk−2, γk−1〉 + 〈γk, γk+1〉)γk−1, ∀k ∈ {3, . . . , Nd − 2}

∆τ3 ∂Ea

∂γNd−1
= γNd−3 − 2(〈γNd−3, γNd−2〉 + 〈γNd−1, γNd

〉)γNd−2 − 2 〈γNd−2, γNd−1〉 γNd

∆τ3 ∂Ea

∂γNd

= γNd−2 − 2 〈γNd−2, γNd−1〉 γNd−1

Both Ea and its gradient can thus be computed with simple inner products of close points on
S

2 and elementary operations such as sums, subtractions and multiplication. This is cheap and
reliable. Regretfully, this nice property is lost when we try to generalize to non-homogeneous
time sampling.

28 CHAPTER 3. OBJECTIVE GENERALIZATION AND MINIMIZATION

3.4 A geometric steepest descent algorithm

The steepest descent algorithm is probably the most straightforward means of minimizing a dif-
ferentiable function f : R

n → R without constraints. Following Nocedal and Wright in [NW99],
we give a reminder of the method in algorithm 1. We delay the details of how one can choose
the step length to section 3.6. Of course, whether or not the sequence generated by algorithm 1
converges to a critical point of f (i.e., a point x∗ such that ∇f(x∗) = 0) depends on the step
choosing algorithm. The initial guess can be constructed based on a priori knowledge of the
problem at hand. For practical purposes, one should, of course, integrate a stopping criterion
into the algorithm.

Algorithm 1: Steepest descent method in R
n

input : A function f : R
n → R and its gradient ∇f : R

n → R
n;

An initial guess x0 ∈ R
n.

output: A sequence x0, x1, . . . converging toward a critical point of f .
for k = 0, 1, . . . do

if ‖∇f(xk)‖ 6= 0 then

dk := − ∇f(xk)
‖∇f(xk)‖

αk := choose step length
xk+1 := xk + αkdk

else
xk+1 = xk

end

end

We would like to use the tools developed in the previous chapter to generalize algorithm 1
to a scalar field f on a manifold M. We already defined the gradient grad f : M → TM in
definition 2.4.2. What we still need is the right interpretation for the update line of the steepest
descent algorithm, namely xk+1 := xk + αkdk. In the geometric context, xk is a point on the
manifold and αkdk is a tangent vector to M at xk. The summation of these two elements is
undefined. However, the meaning of the sum is clear: starting at xk, we follow the vector αkdk

until we reach a new point, which we name xk+1. Retractions, definition 2.7.2, and in particular
the exponential map do exactly this. We can thus rewrite the algorithm as algorithm 2, in very
much the same way.

Algorithm 2: Geometric steepest descent method on M
input : A scalar field f : M → R and its gradient grad f : M → TM;

A retraction R on M; An initial guess x0 on M.
output: A sequence x0, x1, . . . converging toward a critical point of f .
for k = 0, 1, . . . do

if ‖ gradf(xk)‖xk
6= 0 then

dk := − grad f(xk)
‖ grad f(xk)‖xk

αk := choose step length
xk+1 := Rxk

(αkdk)
else

xk+1 = xk

end

end

Such a generalization can be found in [AMS08], along with proper analysis giving, notably,
sufficient conditions to guarantee convergence toward a critical point of the scalar field f . Such
a treatment of the method is not our main focus in this document. We thus propose to simply
state the relevant theorem from [AMS08] without proof. The following results are concerned with
general descent methods, i.e., dk is not forced to point in the opposite direction of the gradient.

3.5. A GEOMETRIC NON-LINEAR CONJUGATE GRADIENT ALGORITHM 29

Global convergence results then depend upon the directions sequence d0, d1, . . . as well as on the
step lengths sequence α0, α1, . . .

Definition 3.4.1 (gradient-related sequence). Let f be a scalar field on M. The sequence
{d0, d1, . . .}, dk ∈ Txk

M, is gradient-related if, for any subsequence {xk}k∈K of {xk} that con-
verges to a non-critical point of f , the corresponding subsequence {dk}k∈K is bounded and satisfies

lim sup
k→∞,k∈K

〈gradf(xk), dk〉xk
< 0.

The above definition essentially forces the directions dk to be descent directions in the end.
Obviously, the steepest descent sequence

{

dk = − gradf(xk)

‖ gradf(xk)‖

}

is gradient-related. The next definition, based on Armijo’s backtracking procedure, forces the
decrease in f to be sufficient at each step (and simultaneously defines what sufficient means),
based on the steepness of the chosen direction. It differs slightly from [AMS08].

Definition 3.4.2 (Armijo point). Given a cost function f on M with retraction R, a point
x ∈ M, a tangent vector d ∈ TxM and scalars α > 0, β, σ ∈ (0, 1), the Armijo point is
Rx

(

dA
)

= Rx

(

tAd
)

= Rx (βmαd), where m is the smallest nonnegative integer such that

f(x) − f(Rx (βmαd)) ≥ σ 〈− gradf(x), βmαd〉x
The real number tA is the Armijo step size.

When d is a descent direction, such a point and step size are guaranteed to exist. The next
theorem uses both these definitions to make a statement about the convergence properties of
variations of algorithm 2.

Theorem 3.4.3. Let {xk} be an infinite sequence of iterates generated by a variation of al-
gorithm 2 such that the sequence {dk} is gradient-related and such that, at each step, f(xk) −
f(xk+1) ≥ c(f(xk) − f(Rxk

(

tAk dk

)

)), where c ∈ (0, 1) and tAk is the Armijo step size for given
parameters. Further assume that the initial level set L = {x ∈ M : f(x) ≤ f(x0)} is compact
(which is certainly the case if M itself is compact). Then,

lim
k→∞

‖ gradf(xk)‖ = 0

We do not need to use the Armijo step size per se. Any step choosing algorithm assuring
sufficient descent will do. The Armijo point, though, is a nice way of defining sufficient descent.
It also makes it possible to prove theorem 3.4.3 fairly independently of the actual directions and
steps used. In the end, one needs to provide a problem-specific, efficient algorithm, as we will do
in the application chapters.

3.5 A geometric non-linear conjugate gradient algorithm

In R
n, the steepest descent algorithm is known for its linear convergence rate. It should not come

as a surprise that the geometric version of it, which we presented in the previous section, is equally
slow (although it is a bit more technical to establish it). In order to achieve faster convergence
rates, one could resort to second-order methods, like Newton or quasi-Newton schemes. This is
unpractical (but not impossible) in a geometric setting, since it requires a proper definition of
the Hessian of a scalar field f , i.e., the derivative of a vector field, as well as a means to compute
it. The affine connections defined in section 2.5 are the right tool, but do not lend themselves to
easy calculations. The objective functions we deal with in this document being quite involved,
we decided to postpone such investigations to later work and to focus on, hopefully, superlinear
schemes based on first order derivatives only.

30 CHAPTER 3. OBJECTIVE GENERALIZATION AND MINIMIZATION

The non-linear conjugate gradient method is such a scheme in R
n. Algorithm 3 is Nocedal

and Wright’s version of it, see [NW99], based on Fletcher-Reeves coefficients. The unit-length
update directions dk have been introduced so that the step length chosen would always corre-
spond to the actual displacement vector’s length. This way, it is easier to compare the steepest
descent step lengths and the NLCG step lengths.

Algorithm 3: Non-linear conjugate gradient method in R
n

input: A function f : R
n → R and its gradient ∇f : R

n → R
n;

An initial guess x0 ∈ R
n.

Evaluate f0 = f(x0),∇f0 = ∇f(x0)
p0 := −∇f0
k := 0
while ∇fk 6= 0 do

dk = pk

‖pk‖

αk := choose step length
xk+1 := xk + αkdk

Evaluate ∇fk+1 = ∇f(xk+1)

βFR
k+1 :=

∇fT
k+1∇fk+1

‖∇fk‖2

pk+1 := −∇fk+1 + βFR
k+1pk

k := k + 1
end

An alternative algorithm, termed the Polak-Ribière version of algorithm 3, uses the following
β’s:

βPR
k+1 =

∇fT
k+1(∇fk+1 −∇fk)

‖∇fk‖2

The update directions dk are not guaranteed to be descent directions unless we impose some
constraints on the αk’s. Indeed, we have:

〈pk,∇fk〉 = −‖∇fk‖2 + βk 〈pk−1,∇fk〉 ,

which needs to be negative for dk to be a descent direction. This can be guaranteed by using
the well-known strong Wolfe conditions on the αk’s. For a step length choosing algorithm which
cannot guarantee a descent direction for the NLCG method, an easy workaround is to accomplish
a steepest descent iteration every time pk is not a descent direction. Theorem 3.4.3 tells us that
such an algorithm would still converge. Interestingly, the particular choice βk = 0 makes the
algorithm revert to the steepest descent method altogether.

In [NW99], Nocedal and Wright mention a wealth of variations on algorithm 3 as well as
useful and interesting results concerning convergence and numerical performances. It is not our
aim to provide an exhaustive treatment of CG algorithms in this document. In the application
chapters later on, we will illustrate performances of the methods outlined here.

We now generalize algorithm 3 to manifolds. Such a generalization can be found in [AMS08].
The update step xk+1 := xk +αkdk can be modified in the very same way we did for algorithm 2.
The direction update though, pk+1 := −∇fk+1 + βk+1pk, is tricky. Indeed, pk+1 and gradfk+1

live in Txk+1
M but pk is in Txk

M. Hence, the sum is undefined. The vector transport concept,
definition 2.8.1, comes in handy here. It enables us to transport vector pk from Txk

M to Txk+1
M,

hence giving us a reasonable substitute for which the sum with − gradfk+1 is defined. Same
thing goes for the βk’s:

βFR
k+1 =

〈gradfk+1, gradfk+1〉
‖ gradfk‖2

βPR
k+1 =

〈gradfk+1, gradfk+1 − Tαkdk
(gradfk)〉

‖ gradfk‖2
(3.9)

3.6. STEP CHOOSING ALGORITHMS 31

Algorithm 4 synthesizes these remarks.

Algorithm 4: Geometric non-linear conjugate gradient method on M
input: A scalar field f : M → R and its gradient grad f : M → TM;

An initial guess x0 ∈ M.
Evaluate f0 = f(x0), grad f0 = grad f(x0)
p0 := − gradf0
k := 0
while gradfk 6= 0 do

dk = pk

‖pk‖

αk := choose step length
xk+1 := Rxk

(αkdk)
Evaluate gradfk+1 = grad f(xk+1)
βk+1 := cf. equation (3.9)
pk+1 := − gradfk+1 + βk+1Tαkdk

(pk)
k := k + 1

end

When minimizing a quadratic objective in n variables, the CG method converges to the exact
solution in at most n iterations. It is therefore customary to restart the non-linear CG method
every n iterations or so, by applying a steepest descent step (which boils down to setting βk = 0).
This way, old, irrelevant information is erased and the algorithm can start anew. In particular,
if the objective is globally convex and is a strictly convex quadratic in a neighborhood about the
minimizer, the algorithm will eventually enter that neighborhood and restart in it, hence revert-
ing to a linear CG method and converging in at most n additional steps. In our algorithms, we
decide to restart every n iterations where n is the dimension of M.

Non-linear CG methods and their convergence properties are not well understood in R
n, let

alone on manifolds. We thus stop here, and rely on numerical tests in the application chapters
to assess the performances of algorithm 4.

3.6 Step choosing algorithms

To choose the step length in algorithms 2 and 4, we need to solve a line search problem, i.e.,
compute

α∗ = arg min
α>0

φ(α) = arg min
α>0

f(Rx (αp)).

Despite the fact that our original problem uses manifolds, the line search problem only uses real
functions: we need to (crudely) minimize a function φ : R → R, knowing that φ′(0) < 0 (descent
direction). A lot of work has been done for this problem in the optimization community. Because
of this, we keep the present section to a minimum, referring the reader to, e.g., [NW99].

We single out one algorithm that proved particularly interesting in our case. Since the regres-
sion problem is quadratic in R

n, we expect the objective function to “look like” a quadratic in a
neighborhood around the minimizer on a manifold, precisely because manifolds locally resemble
R

n. Hence, it makes sense to expect the line search functions to be almost quadratic around
α = 0 when we get near the minimum of f . This is indeed the case when working on the sphere.
These considerations led us to choose algorithm 5 as our chief step choosing algorithm. It is
based on an Armijo backtracking technique with automatic choice of the initial guess α1.

In practice, we add cubic interpolation to algorithm 5 as well for i ≥ 2 and check that the
sequence (α1, α2, . . .) does not decrease too rapidly, along with a few other ad hoc numerical con-
siderations. Following Nocedal and Wright in [NW99], we picked c = 10−4. We also implemented
algorithms ensuring respect of the Wolfe conditions from [NW99] and actual minimization of φ

32 CHAPTER 3. OBJECTIVE GENERALIZATION AND MINIMIZATION

Algorithm 5: Backtracking-interpolation step choosing algorithm

require: A small constant c ∈ (0, 1), an iteration limit N , a line search function φ and its
derivative φ′ (only computed at 0).

input : The previous step chosen αprev and the previous slope φ′0,prev.
output : A step α respecting the sufficient decrease condition φ(0) − φ(α) ≥ −cαφ′(0),

or 0 if N iterations did not suffice.
Compute φ0 := φ(0) and φ′0 := φ′(0)

Set α1 := 2αprev
φ′

0,prev

φ′

0

for i = 1, 2, . . . do

if i > N then
return 0

else
Compute φi = φ(αi)
if φ0 − φi ≥ −cαiφ

′
0 then

return αi

else

αi+1 = − α2
i φ′

0

2(φi−φ0−αiφ′

0)
end

end

end

with Matlab’s fminsearch algorithm. These performed well too, but we do not use them for the
results shown in chapters 4 and 5.

Chapter 4

Discrete curve fitting on the

sphere

The previous chapter constitutes a formal definition of the regression problem we intend to solve
on manifolds and of minimization algorithms on manifolds. These algorithms could, in principle,
be used to solve the regression problem at hand. Still, tractability has not been assessed yet
and is a fundamental factor of success for any numerical method. Mostly, tractability will be
determined by:

• the complexity of the formulas for geodesic distances and logarithmic maps as well as their
derivatives,

• the convergence rate of the minimization algorithms, and

• the amount of data as well as the sampling precision required.

The intricacy of writing the code (mostly inherent to the complexity of working out the gradient
of the objective) and the actual performances are shown to be reasonable on the sphere. It will
be clear, however, that the results of this chapter do not transpose to every manifold.

One of the main arguments justifying the geometric approach instead of, e.g., a direct use
of spherical coordinates, is the absence of any type of singularity problem at the poles. In this
chapter, we give explicit formulas for all the elements needed to apply the non-linear conjugate
gradient scheme to discrete curve fitting on the sphere S

2, i.e., the unit sphere embedded in R
3.

As we will see, the difficulty of writing an algorithm to solve the problem can be reduced by using
proxies for, e.g., the logarithmic map. This can have an influence on the objective function’s
global minimum, but this influence can be made arbitrarily small by refining the curve sampling.
We then show some results for different scenarios and discuss performances as well as tricks to
speed things up a bit.

33

34 CHAPTER 4. DISCRETE CURVE FITTING ON THE SPHERE

Set: S
2 = {x ∈ R

3 : xT x = 1}

Tangent spaces: TxS
2 = {v ∈ R

3 : xT v = 0}

Projector: Px : R
3 → TxS

2 : v 7→ Px(v) = (I − xxT)v

Inner product: 〈v, w〉x = 〈v, w〉 = vT w (induced metric)

Vector norm: ‖v‖x =
√

〈v, v〉x = ‖v‖

Distance: dist (x, y) = arccos(xT y)

Exponential: Expx (v) = x cos(‖v‖) + v
‖v‖

sin(‖v‖)

Logarithm: Logx (y) = dist(x,y)
‖Px(y−x)‖

Px(y − x)

Mean: mean (x, y) = x+y
‖x+y‖

Table 4.1: Geometric toolbox for the Riemannian manifold S
2

4.1 S
2 geometric toolbox

We define the set S
2, the unit sphere embedded in R

3, and give it a natural Riemannian manifold
structure inherited from R

3 (i.e., S
2 is a submanifold of the Euclidean space R

3). From now on,
we indiscriminately use the symbol S

2 to refer to the set or the manifold, just like we often do
when we use the symbol M instead of the actual set the manifold is built upon and vice versa.
Table 4.1 contains a few closed-form expressions for the geometric tools we will use henceforth.
In the next few paragraphs, we go over these formulas and give a word of explanation.

S
2 being a submanifold of R

3 defined by an equality constraint, theorem 2.2.2 applies and
we are entitled to use the identification between tangent vectors and elements of R

3, defini-
tion 2.2.1. Defining f : R

3 → R : x 7→ f(x) = xTx − 1, the differential dfx = 2xT yields
ker dfx = TxS

2 = {v ∈ R
3 : xT v = 0}. We thus think of tangent vectors as actual vectors of

R
3 tangent to the sphere.

It is readily checked that Px◦Px = Px and that Px = PT
x (i.e., Px is an orthogonal projector).

Furthermore, ImPx = TxS
2 and kerPx = T⊥

x S
2 (the orthogonal complement of TxS

2). The Rie-
mannian metric as well as the norm are inherited from R

3 because of the submanifold nature of S
2.

The geodesic distance between p and q, almost by definition, is the angle separating p and
q in radians. It corresponds to the length of the shortest arc of great circle joining the two
points. Great circles are geodesic curves for S

2. A great circle is a unit-radius circle centered
at the origin. To simplify, when computing the distance between close points, one could use the
distance in the embedding space: ‖x− y‖2 = 2(1 − xT y) for x, y ∈ S

2. Proxies for the geodesic
distance are compared on figure 4.1.

The curve t 7→ Expx (tv) describes a great circle passing through x at t = 0 and such
that d

dt Expx (tv)
∣

∣

t=0
= v, hence Exp is indeed the exponential map for S

2 (this can be more
thoroughly checked by computing the second covariant derivative and verifying that it vanishes).
While the closed-form expression for the map is not too complicated, we suggest using an even
simpler map instead, called a retraction, see definition 2.7.2. The retraction we use on S

2 is the
following:

Rx : TxS
2 → S

2 : v 7→ Rx (v) =
x+ v

‖x+ v‖ =
x+ v

√

1 + ‖v‖2
. (4.1)

Using this retraction, it is impossible to reach points further away from x then a right angle (i.e.,
it is impossible to leave the hemisphere whose pole is x). As descent methods usually perform
small steps anyway, this will not be an issue.

The Log map listed in table 4.1 is indeed the inverse of the exponential map, and as such is
the logarithmic map on S

2. This time, the expression is quite complicated (remember that we

4.2. CURVE SPACE AND OBJECTIVE FUNCTION 35

Angle between x and y in degrees

R
el

a
ti
v
e

er
ro

r
o
f
sq

u
a
re

d
p
ro

x
y
-d

is
ta

n
ce

b
et

w
ee

n
x

a
n
d
y

Comparison of squared geodesic distance to candidate proxies

Retraction
Euclidean
Taylor 2

0 45 90 135 180

10−4

10−2

100

Figure 4.1: Different proxies can be envisioned to replace the geodesic distance between x and y on

S
2 to lower the computational burden. All of them are not valuable though. This plot illustrates the

relative error between the genuine squared geodesic distance and (1) the squared Euclidean distance (in

the embedding space) -which coincides with a first order Taylor development of xT y 7→ arccos2(xT y), (2)

a second order Taylor development and, least interestingly, (3) the squared norm that a vector v at x

pointing toward y should have such that Rx (v) = y. In this work, we always use the genuine geodesic

distance.

need to differentiate it). We propose a generalized logarithm, definition 2.7.5:

Lx : S
2 → TxS

2 : y 7→ Lx (y) = Px(y − x) = y − (xT y)x. (4.2)

This is indeed a generalized logarithm. Following the discussion at the end of section 2.7:

Lx (y) = fx(y) · Logx (y) , fx(y) =
‖Px(y − x)‖
dist (x, y)

=

√

1 − (xT y)2

arccos(xT y)
,

where fx is smoothly extended by defining fx(x) = limxT y→1 fx(y) = 1. Lx maps points on the
sphere to tangent vectors at x, pointing in the same direction as the genuine logarithmic map,
but with a smaller norm. The error on the norm can be made arbitrarily small by constraining
y to be close enough to x. We illustrate this fact by figure 4.2.

4.2 Curve space and objective function

Section 3.2 gave us a generic definition of the curve space and of the objective function to
minimize over that space for a regression problem on a manifold M. In this section, we specialize
the definitions to M = S

2. We simply have that the curve space Γ consists of Nd copies of the
sphere, i.e.,

Γ = S
2 × . . .× S

2 =
(

S
2
)Nd

.

Since Γ is just a product manifold based on S
2, the tools we listed in table 4.1 for S

2 can readily
be extended to Γ component wise. For the sake of completeness, we show this explicitly in
table 4.2. This second toolbox will mainly be useful for the optimization algorithms. In order to
define the objective function, one only needs the first toolbox.

Building on sections 3.1 and 3.2, we propose the following energy function for the regression
problem on S

2:

E : Γ → R : γ 7→ E(γ) = Ed(γ) + λEv(γ) + µEa(γ) (4.3)

36 CHAPTER 4. DISCRETE CURVE FITTING ON THE SPHERE

Relative norm error between Logx (y) and Lx (y) on S
2

Angle between x and y in degrees

‖
L
o
g

x
(y

)‖
−
‖
L

x
(y

)‖
‖

L
o
g

x
(y

)‖

0 45 90 135 180
10−3

10−2

10−1

100

Figure 4.2: Both Logx (y) and Lx (y) point in the same direction, but the latter has a smaller norm.

This plot illustrates the relative error introduced by considering the generalized logarithm (4.2) instead

of the true logarithm as a function of the angle separating x and y. In particular, for angles under 12.6

degrees (or 0.22 radians), the error is under 1%, then quickly decays. Since we deal with finer samplings

anyway, the additional error is a very cheap price to pay in comparison to the decrease in complexity.

Set: Γ = S
2 × . . . × S

2 (Nd copies)

Tangent spaces: TγΓ = Tγ1S
2 × . . . × TγNd

S
2

Projector: Pγ : R
3×Nd → TγΓ : v 7→ Pγ(v) = w, wi = Pγi(vi)

Inner product: 〈v, w〉γ =
∑Nd

i=1 〈vi, wi〉γi

Vector norm: ‖v‖γ =
√

〈v, v〉γ

Exponential: Expγ (v) = γ̃, γ̃i = Expγi
(vi)

Table 4.2: Geometric toolbox for the Riemannian manifold Γ = S
2 × . . . × S

2

Ed(γ) =
1

2

N
∑

i=1

wi arccos2(pT
i γsi

)

Ev(γ) =
1

2

Nd−1
∑

i=1

1

∆τi
arccos2(γT

i γi+1)

Ea(γ) =
1

2

[

∆τ1
2

‖a1‖2 +

Nd−1
∑

i=2

∆τi−1 + ∆τi
2

‖ai‖2 +
∆τNd−1

2
‖aNd

‖2

]

(4.4)

Ev follows from choosing the forward order 1 formula for velocity as well as the rectangle method
for the weights αi. In particular, αNd

= 0, hence we do not need backward differences. Ev has
a very simple form because the norm of Logx (y) is simply the geodesic distance between x and
y. We choose the trapezium method for the weights βi. The main reason for doing so is purely
aesthetic, as the weights appearing in the finite differences formulas cancel out the integration
weights. The ∆τi’s are defined as: ∆τi = τi+1 − τi.

Replacing Log by L in the geometric finite differences for acceleration, equations (3.4) and (3.5),
we define the ai’s as follows:

a1 =
−2

∆τ1∆τ2
Lγ1 (γ2) +

2

∆τ2(∆τ1 + ∆τ2)
Lγ1 (γ3)

4.3. GRADIENT OF THE OBJECTIVE 37

ai =
2

∆τi−1 + ∆τi

[

1

∆τi
Lγi

(γi+1) +
1

∆τi−1
Lγi

(γi−1)

]

, ∀i ∈ 2 . . .Nd − 1

aNd
=

−2

∆τNd−1∆τNd−2
LγNd

(γNd−1) +
2

∆τNd−2(∆τNd−1 + ∆τNd−2)
LγNd

(γNd−2)

These will be easier to differentiate, hence making the next section less cumbersome. Remarkably,
the ai’s defined above via simplified geometric differences are the same as the ones we would
obtain by computing the finite differences in the ambient space R

3 then by projecting the results
back on the tangent planes using the Pγi

’s.

4.3 Gradient of the objective

Since S
2 is a Riemannian submanifold of R

3, Γ is a Riemannian submanifold of R
3×Nd and, as

such, theorem 2.4.5 applies. We can therefore write:

gradE : Γ → TΓ : γ 7→ gradE(γ) = Pγ∇E(γ).

In the above equation, E is a scalar field on an open set of the ambient space R
3×Nd containing

Γ and such that E
∣

∣

Γ
= E; TΓ is the tangent bundle of Γ, see definition 2.2.5.

This makes it a lot easier to derive the gradient of E, equation (4.3). We just need to provide
the gradients on Γ of the functions defined in equations (4.4), interpreted as smooth scalar fields
defined on an open set of R

3×Nd containing Γ.

The following atoms are enough to compute ∇E, hence gradE (with x, q ∈ S
2, g : R

3 → R
3):

∇
(

x 7→ arccos2(qTx)
)

(x) =
−2 arccos(qTx)
√

1 − (qTx)2
q

∇
(

x 7→ ‖g(x)‖2
)

(x) = 2(Jg(x))T g(x)

J (x 7→ Lq (x)) (x) = Pq

J (x 7→ Lx (q)) (x) = −(xT q)I − xqT

J denotes the Jacobian, ∇ denotes the gradient of real functions. A completely explicit derivation
of gradE would be overly cumbersome. The material above is sufficient to obtain the needed
expressions. The derivation does not present any challenges, since it reduces to a standard
derivation of a real function followed by a projection (theorem 2.4.5).

4.4 Results and comments

We implemented algorithm 4 for M = S
2× . . .×S

2 = Γ to optimize objective (4.3). We skip over
the technical details of the implementation. The material exposed in this document still being a
proof of concept, we do not deem it important to delve into such details yet. The accompanying
code was written with care. The interested reader can inspect it for further information.

We divide this section in two parts. The first one qualitatively exposes the kind of solutions
we expect based on the tuning parameters λ and µ. Practical results produced by our algorithms
are shown to illustrate the adequacy between predicted and obtained curves. The second part
deals with the behavior our algorithms exhibit when converging toward some solutions. In par-
ticular, we show that CG methods are usually more efficient than the steepest descent method
and behave better (essentially reducing oscillations around the solution). Also, what we later on
refer to as our refinement technique, algorithm 6, is shown to speed up convergence and increase
reliability.

38 CHAPTER 4. DISCRETE CURVE FITTING ON THE SPHERE

0 0.5 1 1.5 2 2.5 3 3.5

Figure 4.3: The red points are the data on the sphere, with identical weights. The color on the sphere

gives the value of the scalar field E, i.e., the sum of squared geodesic distances to the data. The minimum

of E corresponds to the mean of the data, the single white dot. A very good initial guess is to project

the arithmetic mean in R
n back on the sphere by normalizing it. Convergence to six digits of accuracy

is achieved in typically under four iterations.

4.4.1 Types of solutions

Zeroth order

Setting λ = µ = 0 yields an objective function E that completely disregards smoothness and
just tries to fit the discretization points γi to the associated data. Discretization points with no
data point attached become irrelevant. This makes little sense unless Nd = 1, in which case the
only point we search for corresponds to the weighted mean of the data on the manifold. In this
setting, we ignore the time labels ti. The objective we minimize is:

E : S
2 → R : γ 7→ E(γ) =

1

2

N
∑

i=1

wi arccos2(pT
i γ)

This is to be compared to the usual definition of the arithmetic mean in R
n:

p = arg min
γ∈Rn

1

2

N
∑

i=1

wi‖pi − γ‖2 =

∑N
i=1 wipi
∑N

i=1 wi

Of course, the explicit formula for p as a linear combination of the pi’s does not make sense on
S

2 and we therefore use our numerical algorithms instead1. Figure 4.3 shows an example. An
excellent initial guess for the CG algorithm is the Euclidean mean projected back on the sphere,
i.e., γ0 = p

‖p‖ . Typically, convergence is achieved to 6 significant digits in under 4 iterations.

First order

In R
n, setting λ > 0 and µ = 0 disregards second order derivatives, yielding piecewise affine

regression curves. Solving the corresponding problem on S
2, we expect solutions to be piecewise

1Interestingly, since S2 is compact and E is continuous, we can just as easily define and compute the point
that is as far away as possible of the data as the maximizer of E, which was not possible in Rn.

4.4. RESULTS AND COMMENTS 39

geodesic. This is indeed what we observe. This means that a solution is completely specified
by its breaking points, i.e., one γi associated to each different data time label ti. In the con-
tinuous case, Machado et al. showed the same behavior in [MSH06]. It would be interesting to
check whether the breaking points are the same following both the continuous and our discrete
approach.

As λ goes to 0, we expect the solutions to converge toward piecewise geodesic interpolation,
since reducing the distance between the curve and the data will become increasingly important.
As λ goes to infinity, we expect the curve to collapse toward the mean of the data, since the
length of the curve will be highly penalized. We show a few numerical results corroborating our
intuition. Figure 4.4 shows different solutions for three different λ’s.

Second order

In R
n, setting λ = 0 and µ > 0 disregards first order derivatives and penalizes second order

derivatives, yielding solutions in a well-known class: cubic splines. Cubic splines are piecewise
cubic curves constrained to be of class C2 (in the continuous case). These are characterized by a
continuous, piecewise affine acceleration profile γ̈(t) along each dimension, with breaking points
at the data times. This is indeed what we obtain when solving the problem in R

n as described
in chapter 1 (acceleration is computed with standard finite differences).

We may expect to observe this same behaviour on S
2. The results depicted on figure 4.5

(where, for visualization, a minus sign has been added to the acceleration for times t > 1
2 since

the curvature changed at that point) indeed exhibits a compatible acceleration profile. But fig-
ure 4.6 shows a different situation, where the acceleration profile is only continuous and piecewise
differentiable: the profile segments are curved. This surprising result was already predicted and
quantified in a continuous setting by Machado and Silva Leite in [MS06, Thm 4.4]. The result
essentialy gives a differential equation for the connecting segments and continuity contraints,
notably showing that the fourth covariant derivative of γ does not, in general, vanish. Figure 4.6
shows that a similar effect exists in the discrete case. It would be interesting to investigate
whether the effects are quantitatively the same or not. We expect this to be the case.

Tuning µ, again, gives the user access to a whole family of curves. It is important to realize
that, regardless of µ, the length of the curve is not penalized. As µ goes to 0, fitting the data
becomes increasingly important, yielding near interpolation. As µ goes to infinity, we expect the
curve to converge toward a geodesic regression of the data. This is indeed the behavior we can
see on figure 4.5 and figure 4.6.

Geodesic regression is such an important special case that we give another illustration of it
on figure 4.7. Of course, our general approach is not well suited because of the need to make µ
increase to infinity. Plus, we deal with too many degrees of freedom considering the simplicity
of the targeted object. Machado and Silva Leite, in [MS06], exploited the fact that a geodesic
is completely defined by a point p on S

2 and a vector v ∈ TpS
2 to exhibit a set of necessary

conditions for a geodesic to be optimal for the regression problem. Sadly, these equations are
complicated and the authors do not try to solve them explicitly. In future work, we would like
to try our descent algorithms on the set of pairs (p, v), which can be identified with the tangent
bundle, hence is a manifold in its own respect. The tangent bundle of a Riemannian manifold
can be endowed with a metric in various ways. This is a question worth investigating.

Mixed

When λ and µ are both positive, there is no clear classification of the solutions, even in R
n.

Reasoning on the first and second order families described above can give some intuition as
to how one should tune the parameters to obtain the desired curve. We show an example on
figure 4.8.

40 CHAPTER 4. DISCRETE CURVE FITTING ON THE SPHERE

λ = 10−3, µ = 0 λ = 10−2, µ = 0 λ = 10−1, µ = 0

S
p
ee

d

0 1
3

2
3

1
0

2

4

Time

A
cc

el
er

a
ti
o
n

0 1
3

2
3

1
0

0.5

1 ×10−4

Figure 4.4: In this figure, p1 = p4 is the upper point. By tuning λ with µ set to zero, one can generate

a family of piecewise geodesic curves ranging from near interpolation to a collapsed curve onto the mean

point of the data. We only need to compute the end points and the breaking points, i.e., the γ(ti)’s.

Numerical experiments indeed confirm that optimizing a finer curve with γi’s associated to intermediate

times τi gives the same breaking points (up to numerical precision), while the additional points lie on

the geodesics joining them, as they should. The optimal objective values will also be the same. These

statements hold for the definition of Ev given in equation (4.4), since integration of a constant function

with the rectangle method is exact. This observation is of great practical importance. Indeed, we know

exactly how to choose the discretization of γ to optimize at minimal computational cost. We also know

that setting the γi’s on the data points is a good initial guess for the descent method. On this example,

convergence to a curve such that the norm of grad E is less than 10−8 is achieved in, respectively, 6,

11 and 15 CG iterations with the Fletcher-Reeves coefficients and the backtracking-interpolation step

choosing algorithm. The speed and acceleration profiles have been computed using true geometric finite

differences, equations (3.4) and (3.5). Data at the breaking points has been removed. For the spheres

from left to right, the speed and acceleration profile colors are respectively blue, green and red.

4.4. RESULTS AND COMMENTS 41

λ = 0, µ = 10−4 λ = 0, µ = 10−3 λ = 0, µ = 100

S
p
ee

d

0 1
3

2
3

1
0

1.5

3

Time

A
cc

el
er

a
ti
o
n

0 1
3

2
3

1
-16

0

16

Figure 4.5: λ = 0, µ > 0. The speed and acceleration profiles are computed with geometric finite

differences using the exact logarithm. For the spheres from left to right, the profile colors are respectively

blue, green and red. The acceleration profiles, as displayed with corrected sign on the second half, are

piecewise affine (up to numerical precision). This is consistent with cubic splines in R
n, but is atypical on

manifolds. The near-geodesic solution is the hardest to compute. See figure 4.7 for more details. The flat

segments at the end points (t = 0 and t = 1) are caused by our implementation of E which artificially sets

the integration weights β1 and βNd to zero to spare us the burden of computing the gradient of unilateral

differences. This only slightly affects the solution.

42 CHAPTER 4. DISCRETE CURVE FITTING ON THE SPHERE

λ = 0, µ = 10−4 λ = 0, µ = 10−2 λ = 0, µ = 101

S
p
ee

d

0 1
3

2
3

1
0

1.8

3.6

Time

A
cc

el
er

a
ti
o
n

0 1
3

2
3

1
0

4

8

Figure 4.6: This figure is to be compared with figure 4.5. Notice how the acceleration profiles are not

piecewise affine anymore. Previous work by Machado and Silva Leite with continuous curves, see [MS06],

predicted this departure from what can be observed with cubic splines in R
n. This numerical experiment

shows the existence of a similar effect for discretized curves.

4.4. RESULTS AND COMMENTS 43

Figure 4.7: When the acceleration on γ ∈ Γ is evaluated using geometric finite differences with the exact

logarithm on S
2, it is zero if and only if there is a geodesic γ(t) such that γ(τi) = γi for each i, see

section 3.1. Hence, when setting λ = 0 and some large value for µ, it is sufficient to find (optimize) the

position of γ(ti) for each distinct data time ti. This observation yields an effective, reliable manner of

computing the geodesic regression. Unfortunately, when we use the simplified logarithm and the ∆τi’s

are not all equal, the claim is not true anymore. The above procedure still gives a nice initial guess

for the optimization algorithm, but we further need to refine the curve (increasing Nd hence also the

computational cost) to reduce the impact of the generalized logarithm on the final accuracy. With large

Nd, the optimization algorithm tends to “be satisfied” with any geodesic not too far from the data. To

avoid this, an efficient workaround is to optimize with Nd = N first (place the initial guess on the data),

then successively re-optimize while increasing Nd by curve refinement, algorithm 6. The curve shown in

this figure has maximum acceleration of 1.5 × 10−4 for a total length of 1.79 over 1 unit of time. The

parameter values are: λ = 0, µ = 10.

44 CHAPTER 4. DISCRETE CURVE FITTING ON THE SPHERE

λ = 10−5, µ = 10−6

S
p
ee

d

0 1
4

1
2

3
4

1
1

1.75

2.5

Time

A
cc

el
er

a
ti
o
n

0 1
4

1
2

3
4

1
0

4

8

Figure 4.8: When λ > 0 and µ > 0, the solution lives in a large family of curves. The acceleration profile

is still continuous and looks piecewise differentiable, but we do not have an easy characterization of the

family anymore (not even in the Euclidean case). The flat pieces at the end points on the acceleration

plot were explained in the comments of figure 4.5. Notice how picking small positive values for both

tuning parameters yields a near-interpolatory yet smooth-looking curve.

4.4. RESULTS AND COMMENTS 45

4.4.2 Numerical performances

Aside from the data volume, i.e., N , the computational cost depends on a number of parameters.
Namely:

• The core descent algorithm used,

• The step choosing algorithm,

• The quality of the initial guess,

• The number of discretization points, and

• The parameters λ and µ.

The relationship between numerical performance and factors such as Nd, λ and µ is complex to
describe. For the other factors, we give a few guidelines hereafter.

The core descent algorithms we introduced in chapter 3 can be anything from a steepest
descent method to a Polak-Ribière or Fletcher-Reeves flavored CG. The difference between
Fletcher-Reeves and Polak-Ribière is not, in general, significant. They usually both perform
better than a steepest descent. Detailed algorithms to apply second order descent methods on
manifolds, including trust region methods, are described in [AMS08]. We would like to try these
in future work.

We select algorithm 5 as our step length choosing method. It is particularly well suited to our
problem since, for small steps, the line-search function φ(α) = E(Rγ (αp)) can be (amazingly)
well approximated by a quadratic. This comes from the fact that, in R

n × . . . × R
n, our objec-

tive function E is quadratic and Γ locally resembles a Euclidean space. Some alternative step
choosing algorithms require the computation of φ′(α), the derivative of the line search function.
For the sake of completeness, we provide an explicit formula for it in appendix A.

Picking a smart initial guess is important to ensure convergence. Fortunately, numerical
experiments tend to show that the attraction basin of the global minimum is surprisingly large
(but not equal to Γ). Even picking γ0 at random often works. Here are a few choices we
recommend depending on the scenario:

• For the data mean, choose γ0 = p
‖p‖ where p is the arithmetic mean of the data in R

3;

• For piecewise geodesic regression, choose γ0
i = pi;

• For geodesic regression, choose γ0
i = pi, optimize, then successively refine the curve and

re-optimize;

• For mixed order regression, solve the problem in R
3 (chapter 1) then project the solution

back on the sphere, or do the same as for geodesic regression.

As a rule of thumb, it is a good idea to pre-solve the problem with low Nd. Typically, pre-solving
with one discretization point γi for each distinct data time label ti yields good performances.
Placing the initial curve γ0 on the data for this pre-solving step has never failed in our numer-
ical experiments, regardless of the scenario. The refinement step we refer to is highlighted in
algorithm 6. It requires the possibility to compute the mean of two points on the manifold2.
The main advantage of this algorithm is that it lets us set a tolerance on the spacing between
two discretization points without oversampling. In other words, it is fine to work with curves
that alternate slow and fast segments. The resulting time sampling τ1, . . . , τNd

will, in general,
be non-homogeneous. The added advantage is that most of the optimization is done on fewer
points than the final discretization quality.

2If that is overly complicated, one can always use γi or γi+1 as an approximation for the mean of these same
points. It is then up to the optimization process to move the new points to the right places.

46 CHAPTER 4. DISCRETE CURVE FITTING ON THE SPHERE

Algorithm 6: Iterative curve refinement strategy

input : An initial curve γ; tol, a refinement tolerance.
output: An optimized curve γ such that two successive points are separated by a distance

less than tol.
continue := true
while continue do

γ := optimize(γ)
continue := false
foreach i such that dist (γi, γi+1) > tol do

Insert mean (γi, γi+1) between them at time τi+τi+1

2
continue := true

end

end

The CG algorithm performed really well on the piecewise geodesic regression (order 1) prob-
lems. Figure 4.9 shows the evolution of step length, gradient norm and objective value over the
15 descent iterations. Figure 4.10 shows the same thing with a steepest descent algorithm. CG
clearly beats SD. Both exhibit a nice behavior.

Second order problems need more iterations. Furthermore, when µ has a high value (which
is desirable when near geodesic regression is needed), the raw algorithm tends to get stuck with
a close-to geodesic curve not too far away from the data. This stems from the fact that µEa

overshadows Ed. To circumvent this, we use algorithm 6. The convergence behavior for the sec-
ond case exposed in figure 4.5 is shown in figure 4.11. Only the pre-optimization step is shown,
i.e., the placement of the γi’s corresponding to the pi’s. Subsequent steps (refinement + opti-
mization) can be rapidly carried out (around 30 iterations). Fletcher-Reeves and Polak-Ribière
perform about the same. The steepest descent method does as good a job as CG on the two first
instances, and takes as much as five times more iterations on the close-to geodesic example for
comparable precision.

Computing geodesic regressions is an interesting problem. As we showed before, it turns out
to be the most challenging one for our algorithms. Figure 4.12 shows step length and gradient
norm evolution over a huge number of iterations (1250) of the CG algorithm for the geodesic
regression shown in figure 4.7. We have other algorithms in mind for geodesic regression. We
will explore them in future work.

4.4. RESULTS AND COMMENTS 47

Iteration

S
te

p
le

n
g
th

Iteration

G
ra

d
ie

n
t

n
o
rm

Iteration

O
b
je

ct
iv

e
fu

n
ct

io
n

va
lu

e

2 4 6 8 10 12 14 16

5 10 155 10 15

0.2

0.5

0.8

10−12

10−6

100

10−8

10−4

100

Figure 4.9: Convergence of the Fletcher-Reeves CG algorithm on the most difficult case of figure 4.4,

i.e., λ = 10−1. The behavior of the algorithm is excellent. It is slightly better than with Polak-Ribière.

The evolution of the norm of the gradient is typical for superlinear convergence. Notice how the objective

value quickly reaches a plateau. To assess convergence, it is best to look at the gradient norm evolution.

Iteration

S
te

p
le

n
g
th

Iteration

G
ra

d
ie

n
t

n
o
rm

Iteration

O
b
je

ct
iv

e
fu

n
ct

io
n

va
lu

e

5 10 15 20 25 30

10 20 3010 20 30

0.2

0.5

0.8

10−12

10−6

100

10−8

10−4

100

Figure 4.10: Convergence of the steepest descent algorithm on the same problem as figure 4.9. The

behavior of the algorithm is good, but it needs more than twice as many iterations as its CG counterpart.

The evolution of the norm of the gradient is typical for linear convergence.

48 CHAPTER 4. DISCRETE CURVE FITTING ON THE SPHERE

Iteration

S
te

p
le

n
g
th

Iteration

G
ra

d
ie

n
t

n
o
rm

Iteration

O
b
je

ct
iv

e
fu

n
ct

io
n

va
lu

e

1 2 3 4 5 6 7 8 9 10

2 4 6 8 102 4 6 8

0.01

0.02

0.03

10−9

10−5

10−1

10−8

10−4

100

Figure 4.11: Optimization of the γi’s corresponding to the pi’s for the second case displayed in figure 4.5.

Convergence is achieved in about ten iterations. All our algorithms perform about the same except for the

close-to geodesic regression example, for which the CG algorithm performs much better. In subsequent

refinement steps, the points computed in this step will be slightly displaced.

Iteration

S
te

p
le

n
g
th

Iteration

G
ra

d
ie

n
t

n
o
rm

0 500 1000

0 500 1000

10−4

101

106

10−11

10−6

10−1

Figure 4.12: Optimization with CG for the problem shown in figure 4.7, with initial guess for γ equal

to the data. The parameter µ is set to 10 and the optimization is carried out by successive refinements.

After about 750 iterations, the algorithm reached a threshold. The gradient norm was reduced by 8 orders

of magnitude, and numerical precision becomes an issue. We refine the curve by adding points on the

geodesics joining the γi’s and re-optimizing in a few steps.

Chapter 5

Discrete curve fitting on

positive-definite matrices

In the previous chapter, we built and analyzed a method to fit curves to data on the sphere.
One of the main advantages of that manifold is that it is very easy to visualize the data and how
the algorithms behave. In that setting, intuition can get you a long way and one might argue
that the differential geometry background is expendable. S

2 was an ideal toy example to test
our ideas, but we need to work on more complicated manifolds to justify the complexity of our
method.

In this chapter, we propose to study curve fitting on a manifold that is both difficult to picture
and of practical interest: the set of positive-definite matrices P

n
+, endowed with a Riemannian

metric. As is, P
n
+ is an open convex cone. With the usual metric, P

n
+ is thus not complete1.

Completeness is a desirable property because our optimization algorithms produce sequences of
points on P

n
+ and we certainly want these sequences to converge in P

n
+. A possible workaround

is to use a metric that will deform the space so as to stretch the cone limits to infinity. One of
the metrics that does that, later referred to as the affine-invariant metric, is used in this chapter
and the methodology developed in this document is applied to the resulting manifold. As we
will see, computations are more involved, mainly because of the need for derivatives of matrix
functions.

We then exhibit other ways of solving similar problems. We first observe that, P
n
+ being a

convex set, we can interpolate between points by using piecewise linear interpolation. This does
not give us the freedom to tune between fitting and smoothness, but it is nevertheless a very
simple method that we need to compare our algorithms against. Yet another alternative is to
exploit the convex nature of our problem. Modern solvers can readily deal with the usual matrix
norms. Next, we investigate an interesting metric introduced by Arsigny et al. in [AFPA08],
called the Log-Euclidean metric. It endows P

n
+ with a vector space structure, effectively enabling

us to use the simple mathematics developed in the first chapter to solve our problem rapidly.

We conclude this chapter by testing all described methods and comparing them against each
other.

1Quoting [Wei10], a complete metric space is a metric space in which every Cauchy sequence is convergent. In
this definition, the metric refers to the Riemannian distance induced by the Riemannian metric.

49

50 CHAPTER 5. DISCRETE CURVE FITTING ON POSITIVE-DEFINITE MATRICES

5.1 P
n
+ geometric toolbox

We note H
n the set of symmetric matrices of size n and P

n
+ ⊂ H

n the set of positive-definite
matrices of size n. We use the notation A ∈ P

n
+ ⇔ A � 0. The embedding space H

n is endowed
with the usual metric

〈·, ·〉 : H
n × H

n → R : (H1, H2) 7→ 〈H1, H2〉 = trace (H1H2) = trace (H2H1) .

The norm associated to this metric is the Frobenius norm

‖H‖ =
√

〈H,H〉 =
√

trace (H2) =

√

∑

i,j

H2
ij .

The set of positive-definite matrices is an open convex subset of H
n, hence it is not complete.

Giving P
n
+ a Riemannian manifold structure by restricting the above metric to P

n
+ thus would

yield a non-complete manifold. We can endow P
n
+ with a different Riemannian metric in order

to make the resulting manifold complete. One such metric is given in table 5.1, see [AFPA08,
Bha07]. Following Arsigny et al. in [AFPA08], we call it the affine-invariant metric. Since the
affine-invariant metric is not the restriction of the metric on H

n to P
n
+, with this metric, P

n
+ is

not a Riemannian submanifold of H
n. Regardless of the metric, P

n
+ being an open subset of H

n,
the tangent space TAP

n
+ at any positive matrix A corresponds to the set H

n. We illustrate this
on figure 5.1. From now on, P

n
+ refers to the set of positive-definite matrices endowed with the

geometric toolbox described in table 5.1.

Set: P
n
+ = {A ∈ R

n×n : A = AT and xT Ax > 0 ∀x ∈ R
n, x 6= 0}

Tangent spaces: TAP
n
+ ≡ H

n = {H ∈ R
n×n : H = HT }

Inner product: 〈H1, H2〉A =
〈

A−1/2H1A
−1/2, A−1/2H2A

−1/2
〉

Vector norm: ‖H‖A =
√

〈H,H〉A

Distance: dist (A, B) =
∥

∥

∥
log
(

A−1/2BA−1/2
)
∥

∥

∥

Exponential: ExpA (H) = A1/2 exp
(

A−1/2HA−1/2
)

A1/2

Logarithm: LogA (B) = A1/2 log
(

A−1/2BA−1/2
)

A1/2

Mean: mean (A, B) = A1/2(A−1/2BA−1/2)
1/2

A1/2

Table 5.1: Geometric toolbox for the Riemannian manifold P
n
+ endowed with the affine-invariant metric

E

E∗

Figure 5.1: Tangent vectors to an open subset E∗ of a vector space E . Figure courtesy of Absil

et al., [AMS08].

In loose terms, the metric described in table 5.1 stretches the limits of P
n
+ to infinity. To

visualize this, it is instructive to particularize the exponential map to positive numbers, i.e.,

5.2. CURVE SPACE AND OBJECTIVE FUNCTION 51

positive-definite matrices of size 1. Starting at A = 1 and moving along the tangent vector
H = −1, we follow the curve ExpA (tH) = exp(−t). We never reach non-positive numbers for
finite t. The space deformation is stronger close to singular matrices.

We use the matrix exponentials and logarithms. These are defined as series derived from the
Taylor expansions of their scalar equivalents:

exp(A) = I +A+
1

2
A2 + . . . =

∞
∑

k=0

1

k!
Ak (5.1)

log(A) = (A− I) − 1

2
(A− I)2 +

1

3
(A− I)3 − . . . =

∞
∑

k=1

(−1)k+1

k
(A− I)k (5.2)

The series for exp is convergent for any square matrix A. The series for log is derived from the
real series log(1+x) = x−x2/2+x3/3−. . ., which we know is convergent if |x| < 1 (and divergent
if |x| > 1). We thus expect the matrix counterpart to be convergent when ρ(A − I) < 1, where
ρ(X) is the spectral radius of X:

ρ(X) = max (|λ1|, . . . , |λn|) , with λ1, . . . , λn the eigenvalues of X.

This is indeed the case. On the other hand, we know that log(x) is well defined for x > 0.
According to Higham, see [Hig08, problem 11.1], a Taylor series can be used to define the
principal logarithm of any matrix having no eigenvalue on R

−. A hint to this is that, using the
identity

log(A) = s log(A1/s),

it is always possible, with s big enough, to bring the eigenvalues of A1/s into a circle centered
at 1 (in the complex plane) and with radius strictly smaller than 1. Consequently, the matrix
A1/s − I has spectral radius less than 1 and the Taylor series (5.2) can be used. In particular,
the matrix logarithm is well defined as such over P

n
+. Furthermore, Bhatia and Arsigny et al.,

see [Bha07, AFPA08], show that the restriction

exp : H
n → P

n
+ : H 7→ exp(H)

is a diffeomorphism between the metric spaces H
n and P

n
+. The inverse mapping is the restriction

log : P
n
+ → H

n.

Every matrix H ∈ H
n can be diagonalized as H = UDUT with UTU = I, the identity

matrix, and D a diagonal matrix composed with the real eigenvalues λi of H . This yields easier
formulas for the exponential:

exp(H) =

∞
∑

k=0

1

k!

(

UDUT
)k

= U

[

∞
∑

k=0

1

k!
Dk

]

UT = U exp(D)UT ,

where exp(D) is the diagonal matrix whose entries are exp(λi). Same goes for the logarithm of
a positive matrix A = UDUT :

log(A) = U log(D)UT .

5.2 Curve space and objective function

The curve space on P
n
+ is given by

Γ = P
n
+ × . . .× P

n
+ = (Pn

+)Nd .

Each of the Nd points γi composing a curve γ is a positive matrix. The tools shown in table 5.1
can be used on Γ by component wise extension. The objective function E is defined as:

E : Γ → R : γ 7→ E(γ) = Ed(γ) + λEv(γ) + µEa(γ) (5.3)

52 CHAPTER 5. DISCRETE CURVE FITTING ON POSITIVE-DEFINITE MATRICES

Ed(γ) =
1

2

N
∑

i=1

wi dist2 (pi, γsi
)

Ev(γ) =
1

2

Nd−1
∑

i=1

1

∆τi
dist2 (γi, γi+1)

Ea(γ) =
1

2

[

∆τ1
2

‖a1‖2
γ1

+

Nd−1
∑

i=2

∆τi−1 + ∆τi
2

‖ai‖2
γi

+
∆τNd−1

2
‖aNd

‖2
γNd

]

(5.4)

The pi’s are positive-definite matrices. This is to be compared to the definition given in sec-
tion 4.2. The acceleration vectors ai ∈ Tγi

P
n
+ ≡ H

n are symmetric matrices defined by

a1 =
−2

∆τ1∆τ2
Logγ1

(γ2) +
2

∆τ2(∆τ1 + ∆τ2)
Logγ1

(γ3) ,

ai =
2

∆τi−1 + ∆τi

[

1

∆τi
Logγi

(γi+1) +
1

∆τi−1
Logγi

(γi−1)

]

, ∀i ∈ 2 . . .Nd − 1,

aNd
=

−2

∆τNd−1∆τNd−2
LogγNd

(γNd−1) +
2

∆τNd−2(∆τNd−1 + ∆τNd−2)
LogγNd

(γNd−2) .

5.3 Gradient of the objective

We now compute the gradient of E as defined in the previous section. This requires formulas
for the derivatives of the matrix logarithm, appearing in the distance function and the logarith-
mic map defined in table 5.1. We derive a generic way of computing derivatives of functions
of symmetric matrices. The way we derive the material in this section is inspired by [FPAA07,
appendix] and [Bha07].

Let A ∈ H
n, U an orthogonal matrix and D = diag (λ1, . . . , λn), such that A = UDUT . Let

f be a smooth, real function defined by a Taylor series

f(x) =

∞
∑

k=0

akx
k.

Generalized to matrices, this yields

f(A) =

∞
∑

k=0

akA
k = U diag (f(λ1), . . . , f(λn))UT .

We would like to compute Df(A)[H], the directional derivative of f at A in the directionH ∈ H
n.

We differentiate the series term by term. To this end, we need the following result:

D(X 7→ Xk)(A)[H] = lim
h→0

(A+ hH)k −Ak

h
=

k
∑

l=1

Al−1HAk−l

Then,

Df(A)[H] =
∞
∑

k=1

ak

k
∑

l=1

Al−1HAk−l

= U

[

∞
∑

k=1

ak

k
∑

l=1

Dl−1UTHUDk−l

]

UT

= U · Df(D)[UTHU] · UT

which is a simpler object to compute because D is diagonal. Let us write H̃ = UTHU and

5.3. GRADIENT OF THE OBJECTIVE 53

M = Df(D)[H̃]. Entry-wise, we get:

Mij =

∞
∑

k=1

ak

k
∑

l=1

(Dl−1H̃Dk−l)ij

=

∞
∑

k=1

ak

k
∑

l=1

λl−1
i λk−l

j H̃ij

= H̃ij

∞
∑

k=1

ak

λk
j

λi

k
∑

l=1

(

λi

λj

)l

.

Using the identity
∑k

l=1 x
k = x1−xk

1−x , valid for x 6= 1, we distinguish two cases:

λk
j

λi

k
∑

l=1

(

λi

λj

)l

=

{

λk
i −λk

j

λi−λj
, if λi 6= λj

kλk−1
i , if λi = λj

Hence:
Mij = H̃ij f̃(λi, λj),

with:

f̃(λi, λj) =

{

f(λi)−f(λj)
λi−λj

, if λi 6= λj

f ′(λi), if λi = λj

The coefficients f̃(λi, λj) are termed the first divided differences by Bhatia, see [Bha07, p. 60].

We build the matrix F̃ such that F̃ij = f̃(λi, λj). Then,

M = H̃ � F̃ ,

where � stands for entry-wise multiplication (Hadamard’s product, also known as Schur’s prod-
uct). Setting f = log, we explicitly compute D log(A)[H], A � 0, H = HT , as follows:

1. Diagonalize A: A = UDUT , U orthogonal, D = diag (λ1, . . . , λn),

2. Compute H̃ = UTHU ,

3. Compute F̃ (first divided differences of log based on the λi’s),

4. Compute M = H̃ � F̃ ,

5. Compute D log(A)[H] = UMUT

By construction, D log(A)[H] is symmetric.

Remark 5.3.1. As one can see from this algorithm, it is not critical that H be symmetric nor
that A be positive-definite. As long as A does not have eigenvalues on R

−, diagonalizability is
sufficient. We then use U−1 instead of UT .

The objective function components Ed and Ev are linear combinations of squared distances.
To compute their gradients, we need only derive an expression for gradfA(X), with

fA(X) =
1

2
dist2 (A,X) =

1

2

〈

log
(

A−1/2XA−1/2
)

, log
(

A−1/2XA−1/2
)〉

.

By using these identities:

D(f ◦ g)(X)[H] = Df(g(X))[Dg(X)[H]] (composition rule),

D(X 7→ 〈f(X), g(X)〉)(X)[H] = 〈Df(X)[H], g(X)〉+ 〈f(X),Dg(X)[H]〉 (product rule), and

D(X 7→ AXB)(X)[H] = lim
h→0

A(X + hH)B −AXB

h
= AHB,

54 CHAPTER 5. DISCRETE CURVE FITTING ON POSITIVE-DEFINITE MATRICES

we work out the following formula:

DfA(X)[H] =
〈

D log(A−1/2XA−1/2)[A−1/2HA−1/2], log(A−1/2XA−1/2)
〉

.

By definition 2.4.2, the gradient grad fA(X) is the unique symmetric matrix verifying

∀H ∈ H
n, DfA(X)[H] = 〈grad fA(X), H〉X .

Considering
(

H1, . . . , H n(n+1)
2

)

, an orthonormal basis of H
n endowed with the inner product

〈·, ·〉, we can compute an orthonormal basis
(

H1, . . . , Hn(n+1)
2

)

of H
n endowed with the inner

product 〈·, ·〉X as Hi = X1/2HiX
1/2, since

〈Hi, Hj〉X =
〈

X−1/2HiX
−1/2, X−1/2HjX

−1/2
〉

=
〈

Hi, Hj

〉

= δij ,

where δij is the Kronecker delta. We thus compute the gradient of fA at X as follows:

grad fA(X) =

n(n+1)
2
∑

k=1

DfA(X)[Hk]Hk

=

n(n+1)
2
∑

k=1

DfA(X)[X1/2HkX
1/2]X1/2HkX

1/2.

Collecting the relevant equations yields an explicit algorithm to compute grad fA(X). Regret-

fully, this method requires n(n+1)
2 computations of D log. We can do better.

Remembering that for square matrices trace (AB) = trace (BA), and with X = UDUT :

D

(

X 7→ 1

2
‖ log(X)‖2

)

(X)[H] = 〈D log(X)[H], log(X)〉

= trace
(

U(H̃ � F̃)UT · U log(D)UT
)

= trace
(

(H̃ � F̃) log(D)
)

=

n
∑

i=1

log(λi)H̃iiF̃ii

=

n
∑

i=1

log(λi)λ
−1
i H̃ii

= trace
(

D−1 log(D)H̃
)

= trace
(

UTUD−1UTU log(D)UTUH̃UTU
)

= trace
(

X−1 log(X)H
)

=
〈

X−1 log(X), H
〉

,

DfA(X)[H] =
〈

A1/2X−1A1/2 log(A−1/2XA−1/2), A−1/2HA−1/2
〉

=
〈

X−1 log(XA−1), H
〉

=
〈

log(XA−1)X,H
〉

X
,

where we used A log(B)A−1 = log(ABA−1). Hence,

grad fA(X) = log(XA−1)X.

This is a symmetric matrix. Indeed,

log(XA−1)X = log
(

X1/2X1/2A−1X1/2X−1/2
)

X = X1/2 log
(

X1/2A−1X1/2
)

X1/2.

5.3. GRADIENT OF THE OBJECTIVE 55

From this equation, we also see that grad fA(B) = −LogB (A), which makes perfect sense: to
increase the distance between A and B as fast as possible with an infinitesimal change, B ought
to move away from A. By the symmetry fA(B) = fB(A) = 1

2 dist2 (A,B),

grad

(

A 7→ 1

2
dist2 (A,B)

)

(A) = grad fB(A) = log(AB−1)A,

grad

(

B 7→ 1

2
dist2 (A,B)

)

(B) = grad fA(B) = log(BA−1)B.

Figure 5.2 compares 〈gradfA(X), H〉X to a centered difference for some fixed A,X,H . This
figure provides further evidence that our formula for grad fA(X) is correct.

h

er
ro

r

error =
∣

∣

∣

fA(ExpX(hH))−fA(ExpX (−hH))
2h −

〈

log(XA−1)X,H
〉

X

∣

∣

∣

10−10 10−7 10−4 10−1
10−12

10−8

10−4

100

Figure 5.2: Comparison of fA(ExpX(hH))−fA(ExpX (−hH))

2h
with 〈grad fA(X), H〉X (order of magnitude: 1)

for some fixed A,X, H. The slope of the straight segment is 2. Typically, the breaking point occurs for

h close to 10−5, due to numerical accuracy. This plot gives us confidence in the formula derived for

grad fA(X). Similar graphs have been generated to check every gradient formula given in this document,

including grad E itself.

Deriving the gradient for Ea is more cumbersome. We construct an explicit formula for it in
appendix B. We still highlight the important points here. First, we needed to prove the following
identity, for three square matrices A,B,C of size n:

〈A�B,C〉 = trace ((A�B)C)

=

n
∑

i=1

n
∑

j=1

AijBijCji

=
n
∑

i=1

n
∑

j=1

Aij(B
T)ji(C

T)ij

=
〈

A� CT , BT
〉

(5.5)

We also needed to prove the following proposition.

Proposition 5.3.2. Let A,B ∈ P
n
+. Then AB−1 has real, positive eigenvalues and is diagonal-

izable.

Proof. We note Λ(A) the spectrum of A, i.e., the set of eigenvalues of A. We know that, for any
invertible matrix S, Λ(SAS−1) = Λ(A). Indeed:

1 = det(I) = det(SS−1) = det(S) det(S−1),

det(SAS−1 − λI) = det(S(A− λI)S−1) = det(S) det(A− λI) det(S−1) = det(A− λI).

56 CHAPTER 5. DISCRETE CURVE FITTING ON POSITIVE-DEFINITE MATRICES

Then,

Λ(AB−1) = Λ(A1/2A1/2B−1A1/2A−1/2) = Λ(A1/2B−1/2B−1/2A1/2)

= Λ((B−1/2A1/2)T (B−1/2A1/2))

Furthermore, any symmetric matrix of the form XTX with kerX = {0} is positive-definite, since

∀x ∈ R
n, x 6= 0, xTXTXx = ‖Xx‖2 > 0.

Setting X = B−1/2A1/2, we see that AB−1 has the spectrum of a positive-definite matrix. We
diagonalize the symmetric matrix A1/2B−1A1/2 = UDUT , U orthogonal and D diagonal. Define
V = UTA−1/2. V AB−1V −1 = D is diagonal, hence AB−1 is diagonalizable.

The joint material of this section and of appendix B is sufficient to implement direct algo-
rithms to compute the gradient of E. We use these algorithms in our descent methods from
chapter 3. In section 5.7, we illustrate our results.

5.4 Alternative I: linear interpolation

P
n
+ is a convex set. Indeed, let A,B ∈ P

n
+. Then, tA+ (1 − t)B ∈ P

n
+ for all t ∈ [0, 1], since

∀x ∈ R
n, x 6= 0, xT (tA+ (1 − t)B)x = txTAx + (1 − t)xTBx > 0.

Hence, to interpolate between two points p1, p2 ∈ P
n
+, we can simply interpolate between the

(real) entries of p1 and p2, linearly. This alternative to our geometric approach is so simple
that we have to consider it. In section 5.7, we compare our main results for piecewise geodesic
interpolation to this alternative. Of course, we cannot use linear interpolation to solve the generic
problem of smooth regression with more than two data points.

5.5 Alternative II: convex programming

When we endowed P
n
+ with the affine-invariant metric, we “stretched” the limits of the (open)

set P
n
+ to infinity, making the resulting metric space complete. This ensures that solutions of the

regression problem are made of matrices γi � 0. The Log-Euclidean metric, which we introduce
in the next section, has a similar stretching effect, needed to map the convex set P

n
+ onto the

vector space H
n.

We can sometimes solve the problem without such deformations. Using the metric 〈·, ·〉 de-
fined on H

n and the associated norm ‖ · ‖, P
n
+ is now seen as a Riemannian submanifold of H

n.
A natural objective for the regression problem is given by equations (1.3) through (1.6). The
acceleration vectors are defined using finite differences in the ambient space H

n.

This objective is convex. The set Γ is convex too. Standard solvers for semidefinite pro-
gramming, like SeDuMi or SDPT3 [Stu98, TTT99], can solve a relaxed version of our problem:
minimize E(γ) such that each γi is positive semidefinite. The usage of such solvers is made
easy via modeling languages such as Yalmip and CVX [L0̈4, GB10]. We use the latter with
the Frobenius norm for the figures shown in section 5.7. If, at optimality, none of the γi � 0
constraints is active (i.e., γi � 0, ∀i) the optimal solution corresponds to regression in H

n. This
can be done with the simple tools from chapter 1. If, however, one of the constraints is active,
there is, a priori, no way to convert the solution of the relaxed problem into a solution for our
original problem. The original problem might even not have a solution, specifically because Γ is
not complete. We exhibit this in figure 5.5.

Among the advantages of convex programming, we note that:

• efficient, robust algorithms are available,

• and provide optimality certificates;

5.6. ALTERNATIVE III: VECTOR SPACE STRUCTURE 57

• we can use 1, 2, ∞ and Frobenius norms over H
n;

• we need only provide the problem description (no gradients);

• it is easy to add convex constraints.

The affine-invariant and Log-Euclidean distances, seen as functions from P
n
+ × P

n
+ to R

+

where P
n
+ is understood as a convex subset of the vector space H

n, are not convex. Indeed, for

n = 1, P
n
+ is the set of positive real numbers. The two metrics are equal, such that dist2 (x, y) =

(log(y)− log(x))2. The Hessian of this function at (x, y) = (1, 2) has a negative eigenvalue, hence
it is not convex. Consequently, convex programming cannot be used to solve the regression
problem with the affine-invariant and Log-Euclidean metrics.

5.6 Alternative III: vector space structure

We mentioned in section 5.1 that the restricted matrix exponential

exp : H
n → P

n
+ : H 7→ exp(H)

is a smooth diffeomorphism. Following [AFPA08], this can be used to endow P
n
+ with a vector

space structure. We first introduce new summation and scaling operators:

⊕ : P
n
+ × P

n
+ → P

n
+ : (A,B) → A⊕B = exp(log(A) + log(B)),

⊗ : R × P
n
+ → P

n
+ : (α,A) → α⊗A = exp(α log(A)) = Aα.

By construction,
exp : (Hn,+, .) → (Pn

+,⊕,⊗)

is a vector space isomorphism. The inverse mapping is the (principal) matrix logarithm. Arsigny
et al. use this to endow P

n
+ with the metric described in table 5.2, termed the Log-Euclidean

metric, see [AFPA08]. The vector space structure simplifies a number of problems. For example,
the geodesic between A and B is γ(t) = exp(t log(A) + (1 − t) log(B)).

Set: P
n
+ = {A ∈ R

n×n : A = AT and xT Ax > 0 ∀x ∈ R
n, x 6= 0}

Tangent spaces: TAP
n
+ ≡ H

n = {H ∈ R
n×n : H = HT }

Inner product: 〈H1, H2〉A = 〈D log(A)[H1], D log(A)[H2]〉

Vector norm: ‖H‖A =
√

〈H,H〉A

Distance: dist (A, B) = ‖log(B) − log(A)‖

Exponential: ExpA (H) = exp (log(A) + D log(A)[H])

Logarithm: LogA (B) = Dexp(log(A))[log(B) − log(A)]

Mean: mean (A, B) = exp(.5(log(A) + log(B)))

Table 5.2: Geometric toolbox for the Riemannian manifold P
n
+ endowed with the Log-Euclidean metric.

Let A,B ∈ P
n
+ be commuting matrices, i.e., AB = BA. Then, there exists U , orthogonal,

such that A = UDAU
T and B = UDBU

T , with DA and DB diagonal, see [Bha07, p. 23]2. Using
commutativity of diagonal matrices:

‖ log(B) − log(A)‖2 = ‖U(log(DB) − log(DA))UT ‖2

= ‖U log(DBD
−1
A)UT ‖2

= ‖U log(DA
−1/2DBDA

−1/2)UT ‖2

= ‖U log(UTA−1/2UUTBUUTA−1/2U)UT ‖2

= ‖ log(A−1/2BA−1/2‖2

2In [Bha07], Bhatia states that it is sufficient to have A, B ∈ Hn for this to be true

58 CHAPTER 5. DISCRETE CURVE FITTING ON POSITIVE-DEFINITE MATRICES

This proves that, if A and B commute, the affine-invariant and the Log-Euclidean metric are
identical. In particular, this is true when A and B are diagonal. This is linked to the fact that,
for commuting A and B, log(AB) = log(A) + log(B) = log(BA).

We solve the smooth regression problem on P
n
+ endowed with the Log-Euclidean metric as

follows:

1. Compute the new data points p̃i = log(pi) ∈ H
n for each original data point pi ∈ P

n
+;

2. Compute γ̃ ∈ H
n × . . . × H

n, the solution of the regression problem in H
n with the new

data points;

3. Compute γ, the solution of the original problem, as γi = exp(γ̃i).

Step 2 can be carried out by solving a regression problem in R
n(n+1)

2 as described in chapter 1.
Thanks to the vector space structure, we achieve guaranteed minimization of the objective by
solving sparse, structured linear systems. Furthermore, we need not go through the hassle of
computing gradients like we did in section 5.3. Using modern QP solvers, it is also easy to add
constraints to the original problem in the form of linear equalities and inequalities. Linear matrix
inequalities can be added using semidefinite programming solvers, see section 5.5.

5.7 Results and comments

The solutions to our regression problem on P
n
+ can be categorized in the same way we did in sec-

tion 4.4 for the sphere. In this section, we show plots for different scenarios. We compare linear
interpolation, convex programming, the Log-Euclidean metric and the affine-invariant metric.
Positive-definite matrices of size n = 2 are represented as ellipses. The axis orientations of these
ellipses correspond to the eigenvector directions and the axis lengths to the corresponding eigen-
values.

In many special cases, some of these methods yield the same solutions. For example, we
proved that when the data points pi are commuting matrices, the affine-invariant and the Log-
Euclidean metrics are equivalent. Of course, it is then computationally advantageous to solve the
problem with the LE metric. Because of this, we always use the LE metric solution as our initial
guess for the affine-invariant metric optimization. Additionally, since the convex programming
approach uses the Frobenius norm, the shortest path between two matrices corresponds to linear
interpolation in H

n.

We use the CG algorithm with the following naive vector transport:

Tη (ξ) = ξ

This means that we simply compare tangent vectors belonging to different tangent spaces as is.
We expect this to work because our descent algorithms usually make small steps. Because of
the smoothness of the inner product on Riemannian manifolds, close tangent spaces from P

n
+

“resemble each other”. In practice, we observe that the CG algorithm with this vector transport
performs about as well as the steepest descent method, and sometimes much better.

We propose an alternative vector transport, theoretically more attractive, based on the fol-
lowing vector transport on P

n
+, with H ∈ TAP

n
+:

TLogA(B) (H) = B1/2A−1/2HA−1/2B1/2 ∈ TBP
n
+

It has the nice property that, for any two tangent vectors H1, H2 ∈ TAP
n
+, noting Hi =

TLogA(B) (Hi) ∈ TBP
n
+, we have:

〈

H1, H2

〉

B
=
〈

B−1/2H1B
−1/2, B−1/2H2B

−1/2
〉

=
〈

A−1/2H1A
−1/2, A−1/2H2A

−1/2
〉

= 〈H1, H2〉A .

Surprisingly, the CG method with this vector transport extended to Γ showed significantly poorer
performances on the tests we ran. Consequently, in the following, we use Tη (ξ) = ξ.

5.7. RESULTS AND COMMENTS 59

Zeroth order

The weighted mean p of positive-definite matrices can be defined as

p = arg min
X∈Pn

+

∑N
i=1 wifX(pi)
∑N

i=1 wi

. (5.6)

Recall that fX(A) = 1
2 dist2 (X,A). For the Log-Euclidean metric, we simply have

p = exp

(

∑N
i=1 wi log(pi)
∑N

i=1 wi

)

.

This is a generalization of the geometric mean for positive reals. For the affine-invariant metric,
we use the Log-Euclidean mean as an initial guess and apply one of our minimization algorithms
to the expression (5.6). When the pi’s commute, the initial guess is optimal. Otherwise, con-
vergence (i.e., ‖ gradE‖ < 10−9) with 250 random matrices of size 5 is achieved with any of
our algorithms in, typically, three steps or less. In [Bha07], Bhatia proves that the optimization
problem (5.6) is strictly convex in some sense.

First order

Setting λ > 0 and µ = 0, again, produces piecewise geodesic regressions. Figure 5.3 compares
solutions obtained with our main method and the three mentioned alternatives. Figure 5.4 shows
the behavior of the CG and the steepest descent methods. Both converge rapidly. Many of the
remarks we made in section 4.4 for the sphere still hold. More specifically, notice how the curves
obtained with the deforming metrics pass through thinner matrices than the others. This effect
has already been observed by Arsigny et al. for the geodesic joining two data points, see [AFPA08].
The geodesic between A and B has a closed-form expression for the affine-invariant metric:

γA,B : [0, 1] → P
n
+ : t 7→ γA,B(t) = ExpA (tLogA (B))

= A1/2 exp
(

t log
(

A−1/2BA−1/2
))

A1/2 (5.7)

Second order

For geodesic regression (high µ, zero λ), we simply compute the γi’s at the data time labels ti,
because we use the exact logarithmic map on P

n
+ (see our discussion in subsection 4.4.1). This

drastically decreases the computational cost. We show an example in figure 5.6. Geodesics built
with the deforming metrics can be indefinitely extended on both ends, whereas the regression
built with convex programming would, eventually, reach a singular matrix.

Setting λ = 0 and µ > 0 yields spline-like curves. Figure 5.7 shows an example for the
four solving techniques we discussed. Computing the solution for the affine-invariant metric
is computationally more intensive, as figure 5.8 demonstrates. The CG algorithm, despite our
poor choice of vector transport, performs much better than the steepest descent method. SD
needed 3.5 times as many iterations for equal quality (judged based on the gradient norm). The
refinement technique, algorithm 6, cut down the number of needed iterations by about 20% for
the example on figure 5.7, compared to using the Log-Euclidean solution as initial guess directly.

60 CHAPTER 5. DISCRETE CURVE FITTING ON POSITIVE-DEFINITE MATRICES

data

linear

convex

Log-Euclidean

affine-invariant

Figure 5.3: λ = 10−1, µ = 0. The data consists in three positive-definite, non-commuting matrices shown

on the first line. The second line shows linear interpolation between the data. The third line is obtained

by solving the problem with SDPT3, using CVX. When λ goes to zero, this goes to linear interpolation.

The fourth line is computed by solving a linear least-squares problem on the log(pi)
′s and going back on

P
n
+ via the matrix exponential. For the fifth line, we use the Log-Euclidean solution at the three data

times ti as initial guess for the breaking points. We apply a minimization algorithm starting with them.

The additional intermediate points are computed with equation (5.7). This is still optimal. Computation

times for the three last lines are comparable.

Iteration

S
te

p
le

n
g
th

Iteration

G
ra

d
ie

n
t

n
o
rm

Iteration

O
b
je

ct
iv

e
fu

n
ct

io
n

va
lu

e

1 8 16

1 8 161 8 16

0.56

0.57

10−9

10−5

10−1

10−7

10−4

10−1

Figure 5.4: These plots show the behavior of the minimization process for the affine-invariant metric

solution shown in figure 5.3. Both the geometric steepest descent method (blue) and the non-linear

geometric CG method (red) perform really well. The important point here is that we need only compute

the γi’s at the data times (the breaking points), i.e., we search for just three positive-definite matrices.

5.7. RESULTS AND COMMENTS 61

replacemen

λ1

λ
2

linear scale

λ1

λ
2

log scale

1 1.5 21 1.5 2

10−8

10−1

100

0
0.1

1

Figure 5.5: λ = 0, µ = 10−4. The four data points are 2×2 positive-definite diagonal matrices. They are

pictured as black circles, placed in the eigenvalue plane in linear scale (left) and logarithmic scale (right).

Since the data matrices commute, the solution with the affine-invariant and the Log-Euclidean metrics

are the same. The red curve shows regression with these metrics. The blue curve shows regression with

convex programming (metric inherited from H
n). SDPT3, our semidefinite programming solver, claims

optimality (according to the default tolerances). Notice how the blue curve passes through almost singular

matrices. The actual solution most likely passes through singular matrices. SDPT3 uses an interior point

method, hence constraints are never tight. The fact that the optimal curve leaves P
n
+ is a main argument

against convex programming in this setting.

data

linear

convex

Log-Euclidean

affine-invariant

Figure 5.6: λ = 0, µ = 103. An example of geodesic regression across three data points with our three

solving techniques, and linear interpolation (second line). Convex and Log-Euclidean metric solutions

(third and fourth lines) are exact (up to numerical accuracy) and quick to compute. The affine-invariant

metric solution (bottom line) is reasonably quick to compute. On this plot, the curve displayed has

maximum acceleration of 10−3 for a total length of 3.3 traveled in one time unit.

62 CHAPTER 5. DISCRETE CURVE FITTING ON POSITIVE-DEFINITE MATRICES

data

linear

convex

Log-Euclidean

affine-invariant

Figure 5.7: λ = 0, µ = 10−3. The three methods of interest (bottom lines) give sensible results. Which

one should use in practice is application-dependent. Of course, piecewise linear interpolation is not

acceptable when spline-like curves are required.

Iteration

S
te

p
le

n
g
th

Iteration

G
ra

d
ie

n
t

n
o
rm

0 800 1600 2400

0 800 1600 2400

10−7

10−4

10−1

10−9

10−6

10−3

Figure 5.8: These plots show the convergence behavior for figure 5.7 with the CG algorithm and the

successive refinement technique. Notice how the CG algorithm exhibits a linear convergence rate. Con-

vergence is excessively slow compared to alternatives II and III which gave almost instantaneous results.

Conclusions and perspectives

In the present work, we discretized the problem of fitting smooth curves to data on manifolds (1.2)
and we designed and implemented algorithms to solve the discrete problem (3.6). To this end,
we introduced the concept of geometric finite differences, which fill the classic role of finite dif-
ferences on manifolds, and computed explicit formulas for the objective (3.6) and its gradient
on R

n, S2,Pn
+ and SO(3). The optimization schemes we used are various flavors of a geomet-

ric version of the non-linear conjugate gradient scheme taken from [AMS08]. To alleviate the
computational burden, we exploited the concepts of retraction and vector transport, borrowed
from [AMS08], as proxies for the expensive exponential map and parallel transport. We also
introduced a similar concept for the logarithmic map, which we here call generalized logarithms.

Performances were shown to be excellent for first order problems (µ = 0): our optimization
algorithms reach small values of the gradient in a few iterations. The more interesting case of
second order regression (µ > 0), however, is solved significantly more slowly. The iterative refine-
ment technique we introduced, although it has proven valuable, only partly helps. Furthermore,
the algebra needed to obtain the gradient of (3.6) on matrix manifolds turned out to be quite
involved. This adds to the intricacy of implementing the algorithms we designed. The attrac-
tive alternatives we proposed on P

n
+ are further arguments pointing toward the need for faster,

simpler algorithms. Two options we intend to pursue in future work to address these concerns
are

1. the usage of automatic differentiation techniques or finite difference approximations of the
derivatives of the objective, and

2. the implementation of higher-order optimization schemes like, e.g., the geometric trust-
region method exposed in [AMS08].

Let us mention a few research directions we would like to investigate in future work.

• We believe that, as maxi |τi+1 − τi| → 0, the solution of the discrete problem may tend
toward a sampled version of the solution of the continuous problem. We intend to work
on a proof of this statement. On a related note, we would like to verify that the breaking
points appearing in optimal curves for λ > 0, µ = 0 in the continuous case coincide with
the breaking points computed with our discrete approach.

• Geodesic regression is a special case of interest in applications, but is slow to achieve with
our present algorithms. A geodesic on M is completely specified by an element of the
tangent bundle TM, that is: a point p ∈ M and a tangent vector ξ ∈ TpM. We would
like to, generically, equip the manifold TM with a toolbox based on the toolbox for M so
we could apply the algorithms described in this document to efficiently compute geodesic
regressions.

• To apply our techniques to a manifold M, one needs a geometric toolbox for M, pos-
sibly a vector transport and the gradients of the functions f(A,B) = dist2 (A,B) and
g(A,B,C) = 〈LogA (B) ,LogA (C)〉A with respect to all variables. At some point, it would
be interesting to build software that only asks the user for these elements. This would en-
able fast prototyping and usefulness assessment. For all manifolds treated in this document,
we found that grad(A 7→ f(A,B))(A) = −2 LogA (B), which makes sense geometrically.

63

64

This is a general property, see [SASK09, Theorem 3.1]. This observation partly alleviates
the implementation burden for second order problems (µ > 0). For first order problems
(µ = 0), no gradient formulas have to be computed at all.

• A typical strategy in (discrete-time) control is to compute the optimal commands to apply
to the system up to some distant horizon in the future, then only apply the first computed
command. The criterion is usually expressed in terms of the predicted future states of the
system, based on the proposed command. It is customary to also include a regularization
term on the command in the objective function. A well-established strategy to tackle this
problem is, e.g., Model Predictive Control. In practical applications, the system is often
subject to constraints. When the admissible set for the command is a manifold M, we
really are looking for an optimal smooth curve on M. Investigating these applications is a
natural extension of our work.

• The software written for this work3 is only a proof of concept. The rich structure of the
problems we treat gives plenty of opportunities for efficient organization of the compu-
tations, which should drastically improve the performances. When our algorithms reach
maturity, it will be useful to design and distribute efficient, usable software.

• Other manifolds of practical interest are, e.g., the Grassmann (quotient) manifold and the
(infinite-dimensional) shape space. Smooth interpolation in the shape space corresponds
to smooth morphing between given shapes, with applications in computer graphics, object
tracking. . .

The positive results we obtained in the present work and the appealing questions left to
answer strongly encourage us to further our investigations.

3Downloadable here: http://www.inma.ucl.ac.be/~absil/Boumal/

Appendix A

Line search derivative on S
2

We give an explicit formula for the derivative of the line search function φ : R → R appearing
in the descent methods applied on the sphere S

2. The equivalent formula for the line search
function on Γ = S

2 × . . .× S
2 is a component wise extension of the one given below.

With x ∈ S
2, d ∈ TxS

2 and ‖d‖ = 1:

Rx (αd) =
x+ αd√
1 + α2

d

dα
Rx (αd) =

1

(1 + α2)
3
2

(d− αx) ∈ TRx(αd)S
2

φ(α) = E(Rx (αd))

= E(Rx (αd))

φ′(α) =

〈

∇E(Rx (αd)),
d

dα
Rx (αd)

〉

=
1

(1 + α2)
3
2

〈

∇E(Rx (αd)), d− αx
〉

=
1

(1 + α2)
3
2

〈gradE(Rx (αd)), d− αx〉
Rx(αd)

φ′(0) = 〈gradE(x), d〉x

65

66 APPENDIX A. LINE SEARCH DERIVATIVE ON S
2

Appendix B

Gradient of Ea for P
n
+

In this appendix, we derive an explicit formula for the gradient of Ea from chapter 5, equa-
tion (5.4). For i ∈ 2, . . . , Nd − 1, with the appropriate constants r1, r2:

1

2
‖ai‖2

γi
=

1

2

∥

∥r1 Logγi
(γi+1) + r2 Logγi

(γi−1)
∥

∥

2

γi

=
1

2

∥

∥

∥γi
−1/2

(

r1 Logγi
(γi+1) + r2 Logγi

(γi−1)
)

γi
−1/2

∥

∥

∥

2

=
1

2

∥

∥

∥r1 log
(

γi
−1/2γi+1γi

−1/2
)

+ r2 log
(

γi
−1/2γi−1γi

−1/2
)∥

∥

∥

2

= r21fγi
(γi+1) + r22fγi

(γi−1) + r1r2

〈

log
(

γi
−1/2γi+1γi

−1/2
)

, log
(

γi
−1/2γi−1γi

−1/2
)〉

.

We need to provide formulas for the gradient of the third term with respect to γi and γi+1 (which
is symmetric with γi−1). We introduce the real function g,

g : (Pn
+)3 → R : (A,B,C) 7→ g(A,B,C) =

〈

log
(

A−1/2BA−1/2
)

, log
(

A−1/2CA−1/2
)〉

.

Using the identity 〈A�B,C〉 =
〈

A� CT , BT
〉

we proved in section 5.3, we compute:

D (B 7→ g(A,B,C)) (B)[H] =
〈

D log(A−1/2BA−1/2)[A−1/2HA−1/2], log(A−1/2CA−1/2)
〉

Introducing A−1/2BA−1/2 = UDUT , H̃ = UTA−1/2HA−1/2U and

F̃ , the first divided differences of log w.r.t. the λi = Dii

=
〈

U(H̃ � F̃)UT , log(A−1/2CA−1/2)
〉

=
〈

H̃ � F̃ , UT log(A−1/2CA−1/2)U
〉

Using the identity (5.5):

=
〈

[UT log(A−1/2CA−1/2)U] � F̃ , H̃
〉

=
〈

A−1/2U([UT log(A−1/2CA−1/2)U] � F̃)UTA−1/2, H
〉

grad (B 7→ g(A,B,C)) (B) = BA−1/2U
(

[UT log(A−1/2CA−1/2)U] � F̃
)

UTA−1/2B

We still need the gradient with respect to A. For this, we observe that:

g(A,B,C) =
〈

log
(

A−1/2BA−1/2
)

, log
(

A−1/2CA−1/2
)〉

=
〈

A−1/2 log
(

BA−1
)

A1/2, A−1/2 log
(

CA−1
)

A1/2
〉

=
〈

log
(

BA−1
)

, log
(

CA−1
)〉

Using log(X) = − log(X−1) :

=
〈

log
(

AB−1
)

, log
(

AC−1
)〉

67

68 APPENDIX B. GRADIENT OF EA FOR P
N
+

The matrices AB−1 and AC−1 are not, in general, symmetric. They still have real, positive
eigenvalues and are diagonalizable. We proved this statement in proposition 5.3.2. We introduce:

AB−1 = UBDBU
−1
B

AC−1 = UCDCU
−1
C

F̃B = first divided differences of log for λi = (DB)ii

F̃C = first divided differences of log for λi = (DC)ii

YB = U−1
B log(AC−1)UB = U−1

B UC log(DC)U−1
C UB

YC = U−1
C log(AB−1)UC = U−1

C UB log(DB)U−1
B UC

Then, similar algebra yields

grad (A 7→ g(A,B,C)) (A) = UBDB(YB � F̃B)U−1
B A+ UCDC(YC � F̃C)U−1

C A.

Although it is not obvious from it’s expression, this matrix is, by construction, symmetric.

The equations presented in section 5.3 and in this appendix are sufficient to compute the
gradient gradE(γ).

Appendix C

SO(3) geometric toolbox

Our algorithms and problem formulation from chapter 3 are well defined for any smooth, finite-
dimensional Riemannian manifold. In practice, they can be applied to such manifolds only if the
expressions for, notably, the logarithmic map and the geodesic distance are tractable. SO(3) (the
special orthogonal group) is such a manifold of great practical interest. SO(3) has dimension 3.
Elements of SO(3) are characterized by an axis of rotation in R

3 and an angle of rotation.

In this appendix, we give a full toolbox of formulas needed to apply the techniques described
in this document to SO(3). The material in this appendix has been tested and works very well.
Practical applications include computer graphics for example, where one could require a camera
to show some 3D scene under different rotations at predetermined times, with smooth transitions
between rotations. Typically, one would apply our algorithms with zero λ and low µ to achieve
smooth interpolation. The proposed approach yields considerably smoother looking transitions
than could be obtained with piecewise geodesic interpolation. Another area of potential ap-
plications could be related to control of mechanical systems. Our reference for this appendix
is [Bak00], an introduction to matrix Lie groups.

The linear group is defined as

GL(3) = {A ∈ R
3×3 : det(A) 6= 0}.

A particular subgroup of it is the special linear group:

SL(3) = {A ∈ GL(3) : det(A) = 1}.
Considering only the orthogonal matrices in SL(3) yields the special orthogonal group:

SO(3) = {A ∈ SL(3) : ATA = I}.

SO(3) is a Lie group, i.e., it is a group and a manifold. Applying theorem 2.2.2 gives a simple
expression for the tangent spaces, see table C.1. The tangent space at the origin,

so(3) = TI SO(3) = {H ∈ R
3×3 : H +HT = 0}

is called the Lie Algebra of SO(3) and corresponds to the set of skew-symmetric matrices. Note
that TA SO(3) = A so(3) = {H = AH̃ : H̃ ∈ so(3)}. Endowing so(3) with the inner product
from GL(3) gives a natural metric on SO(3):

〈H1, H2〉A =
〈

ATH1, A
TH2

〉

I
= trace

(

(ATH1)
TATH2

)

= trace
(

HT
1 H2

)

= 〈H1, H2〉 .

Hence, SO(3) is a submanifold of GL(3). It can be proven that, at the identity matrix I, the
Exp and Log maps reduce to the matrix exponential and logarithm:

ExpI : so(3) → SO(3) : H 7→ ExpI (H) = exp(H),

LogI : SO(3) → so(3) : A 7→ LogI (A) = log(A).

69

70 APPENDIX C. SO(3) GEOMETRIC TOOLBOX

Set: SO(3) = {A ∈ R
3×3 : AT A = I and det(A) = 1}

Tangent spaces: TA SO(3) = {H ∈ R
3×3 : AT H + HT A = 0}

Inner product: 〈H1, H2〉A = trace
(

HT
1 H2

)

Vector norm: ‖H‖A =
√

〈H,H〉A

Distance: dist (A, B) = ‖LogA (B)‖ = ‖ log(AT B)‖

Exponential: ExpA (H) = AExpI

(

AT H
)

= A exp(AT H)

Logarithm: LogA (B) = A log(AT B)

Mean: mean (A, B) = A exp(.5 log(AT B))

Table C.1: Toolbox for the special orthogonal group, SO(3).

From there, we can define the Exp and Log maps everywhere on SO(3), see table C.1.

We introduce the two next functions like we did in section 5.3 for positive matrices:

fA : SO(3) → R
+ : B 7→ fA(B) =

1

2
dist2 (A,B) ,

g : (SO(3))
3 → R

+ : (A,B,C) 7→ g(A,B,C) =
〈

A log(ATB), A log(ATC)
〉

.

Similar algebra to what was done in section 5.3 and appendix B yields formulas for the gradients.
We used remark 5.3.1 and the fact that orthogonal matrices are diagonalizable.

gradfA(B) = B log(ATB) = −LogB (A) ∈ TB SO(3)

And:

ATB = UBDBU
−1
B (diagonalize)

ATC = UCDCU
−1
C (diagonalize)

F̃B = first divided differences of log for λi = (DB)ii

F̃C = first divided differences of log for λi = (DC)ii

grad (A 7→ g(A,B,C)) (A) = BUB

(

F̃B �
(

U−1
B log(CTA)UB

)

)

U−1
B

+ CUC

(

F̃C �
(

U−1
C log(BTA)UC

)

)

U−1
C ∈ TA SO(3)

grad (B 7→ g(A,B,C)) (B) = AU−T
B

(

F̃B �
(

UT
B log(ATC)U−T

B

)

)

UT
B ∈ TB SO(3)

grad (C 7→ g(A,B,C)) (C) = AU−T
C

(

F̃C �
(

UT
C log(ATB)U−T

C

)

)

UT
C ∈ TC SO(3)

This is sufficient to compute the gradient of the objective function (3.6) applied to Γ =
SO(3) × . . . × SO(3). The descent algorithms from chapter 3 apply directly, with the following
vector transport on SO(3) with a component wise extension to Γ:

Tξ (η) = BAT η, with ξ, η ∈ TA SO(3) and ξ = LogA (B) .

This vector transport preserves inner products (it is an isometric transport), i.e.,

〈η1, η2〉A = 〈Tξ (η1) ,Tξ (η2)〉B .

Bibliography

[AFPA08] V. Arsigny, P. Fillard, X. Pennec, and N. Ayache. Geometric means in a novel vector
space structure on symmetric positive-definite matrices. SIAM Journal on Matrix
Analysis and Applications, 29(1):328, 2008.

[Alt00] C. Altafini. The de Casteljau algorithm on SE(3). In Book chapter, Nonlinear control
in the Year 2000, pages 23–34, 2000.

[AMS08] P.-A. Absil, R. Mahony, and R. Sepulchre. Optimization Algorithms on Matrix Man-
ifolds. Princeton University Press, Princeton, NJ, 2008.

[Bak00] Andrew Baker. An introduction to matrix groups and their applications. http:

//www.maths.gla.ac.uk/~ajb/dvi-ps/lie-bern.pdf, 2000.

[Bha07] R. Bhatia. Positive definite matrices. Princeton University Press, 2007.

[Boo86] W.M. Boothby. An introduction to differentiable manifolds and Riemannian geometry.
Academic Press Inc, 1986.

[CKS99] P. Crouch, G. Kun, and F. Silva Leite. The de Casteljau algorithm on the Lie group
and spheres. In Journal of Dynamical and Control Systems, volume 5, pages 397–429,
1999.

[CS91] P. Crouch and F. Silva Leite. Geometry and the dynamic interpolation problem. In
Proc. Am. Control Conf., Boston, 26–29 July, 1991, pages 1131–1136, 1991.

[CS95] P. Crouch and F. Silva Leite. The dynamic interpolation problem: on Riemannian
manifolds, Lie groups, and symmetric spaces. J. Dynam. Control Systems, 1(2):177–
202, 1995.

[CSC95] M. Camarinha, F. Silva Leite, and P. Crouch. Splines of class Ck on non-Euclidean
spaces. IMA J. Math. Control Inform., 12(4):399–410, 1995.

[dC92] Manfredo Perdigão do Carmo. Riemannian geometry. Mathematics: Theory & Ap-
plications. Birkhäuser Boston Inc., Boston, MA, 1992. Translated from the second
Portuguese edition by Francis Flaherty.

[FPAA07] P. Fillard, X. Pennec, V. Arsigny, and N. Ayache. Clinical DT-MRI estimation,
smoothing, and fiber tracking with log-Euclidean metrics. IEEE Transactions on
Medical Imaging, 26(11):1472–1482, 2007.

[GB10] M. Grant and S. Boyd. CVX: Matlab software for disciplined convex programming,
version 1.21. http://cvxr.com/cvx, May 2010.

[Hai09] Luc Haine. Eléments de géométrie différentielle (MAT2110 course notes). Mathe-
matics Department, Université catholique de Louvain (UCL), 2009.

[Hig08] Nicholas J. Higham. Functions of Matrices: Theory and Computation. Society for
Industrial and Applied Mathematics, Philadelphia, PA, USA, 2008.

[HS07] K. Hüper and F. Silva Leite. On the geometry of rolling and interpolation curves on
Sn, SOn, and Grassmann manifolds. J. Dyn. Control Syst., 13(4):467–502, 2007.

71

72 BIBLIOGRAPHY

[JSR06] Janusz Jakubiak, Fátima Silva Leite, and Rui C. Rodrigues. A two-step algorithm
of smooth spline generation on Riemannian manifolds. J. Comput. Appl. Math.,
194(2):177–191, 2006.

[KDL07] Alfred Kume, Ian L. Dryden, and Huiling Le. Shape-space smoothing splines for
planar landmark data. Biometrika, 94(3):513–528, 2007.

[L0̈4] J. Löfberg. Yalmip : A toolbox for modeling and optimization in MATLAB. In
Proceedings of the CACSD Conference, Taipei, Taiwan, 2004.

[MS06] Lúıs Machado and F. Silva Leite. Fitting smooth paths on Riemannian manifolds.
Int. J. Appl. Math. Stat., 4(J06):25–53, 2006.

[MSH06] Lúıs Machado, F. Silva Leite, and Knut Hüper. Riemannian means as solutions of
variational problems. LMS J. Comput. Math., 9:86–103 (electronic), 2006.

[NHP89] Lyle Noakes, Greg Heinzinger, and Brad Paden. Cubic splines on curved spaces. IMA
J. Math. Control Inform., 6(4):465–473, 1989.

[NW99] J. Nocedal and S.J. Wright. Numerical optimization. Springer Verlag, 1999.

[PN07] Tomasz Popiel and Lyle Noakes. Bézier curves and C2 interpolation in Riemannian
manifolds. J. Approx. Theory, 148(2):111–127, 2007.

[SASK09] Chafik Samir, P.-A. Absil, Anuj Srivastava, and Eric Klassen. A gradient-descent
method for curve fitting on riemannian manifolds. Technical Report UCL-INMA-
2009.023 (submitted), Universite catholique de Louvain, 2009.

[Stu98] Jos F. Sturm. Using sedumi 1.02, a matlab toolbox for optimization over symmetric
cones, 1998.

[TTT99] K. C. Toh, M.J. Todd, and R. H. Tutuncu. Sdpt3 - a matlab software package for
semidefinite programming. Optimization Methods and Software, 11:545–581, 1999.

[VD08] Paul Van Dooren. Algorithmique numérique (INMA2710 course notes). Ecole Poly-
technique de Louvain, Université catholique de Louvain (UCL), 2008.

[Wei10] Eric W. Weisstein. Complete metric space. From MathWorld–A Wolfram Web Re-
source. http://mathworld.wolfram.com/CompleteMetricSpace.html, 2010.

