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Optimization on smooth manifolds
min
𝑥𝑥
𝑓𝑓 𝑥𝑥 subject to 𝑥𝑥 ∈ ℳ

Linear spaces
Unconstrained; linear equality constraints
Fixed-rank matrices, tensors
Recommender systems, large-scale Lyapunov equations, …
Orthonormal matrices (sphere, Stiefel, rotations, ...)
Dictionary learning, SfM, SLAM, PCA, ICA, SBM, Electr. Struct. Comp.…
Positive definite matrices, positive vectors
Metric learning, Gaussian mixtures, diffusion tensor imaging, …
Quotients through symmetries
Invariance under group actions
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My talk today however is about nonsmooth sets.

... though we’ll see smoothness is never far.



A classical geometric fact first

The following set is a smooth manifold:

𝑋𝑋 ∈ 𝐑𝐑2×2:𝑋𝑋 = 𝑋𝑋⊤ and rank 𝑋𝑋 = 1

However, the following set is not a smooth manifold:

𝑋𝑋 ∈ 𝐑𝐑2×2:𝑋𝑋 = 𝑋𝑋⊤ and rank 𝑋𝑋 ≤ 1

Let’s do a proof by picture.



𝑋𝑋 ∈ 𝐑𝐑2×2:𝑋𝑋 = 𝑋𝑋⊤ and rank 𝑋𝑋 ≤ 1 =
𝑥𝑥 𝑦𝑦
𝑦𝑦 𝑧𝑧 : 𝑥𝑥𝑥𝑥 − 𝑦𝑦2 = 0

The origin is the only 
matrix of rank zero.

There, the set is not smooth.



Optimization under rank constraints

min
𝑋𝑋∈𝐑𝐑𝑚𝑚×𝑛𝑛 𝑓𝑓(𝑋𝑋) subject to rank 𝑋𝑋 = 𝑘𝑘

Fixed-rank matrices form a smooth embedded submanifold of 𝐑𝐑𝑚𝑚×𝑛𝑛.

However, this is not a closed set.

Issue for optimization: sequences might “converge” outside the 
manifold, at which point we lose all control.



Optimization under rank constraints

min
𝑋𝑋∈𝐑𝐑𝑚𝑚×𝑛𝑛 𝑓𝑓(𝑋𝑋) subject to rank 𝑋𝑋 ≤ 𝑘𝑘

Closure: bounded-rank matrices form an algebraic variety in 𝐑𝐑𝑚𝑚×𝑛𝑛.

Issue for optimization: this is no longer smooth.

If iterates remain comfortably on rank-𝑘𝑘 manifold, fine.
But if they converge to lesser-rank matrices, bad things can happen.



Even computing stationary points is tricky

*Schneider & Uschmajew, SIOPT 2015,
Convergence Results for Projected Line-Search Methods on Varieties of Low-Rank Matrices Via Łojasiewicz Inequality

min
𝑋𝑋∈𝐑𝐑𝑚𝑚×𝑛𝑛 𝑓𝑓(𝑋𝑋) subject to rank 𝑋𝑋 ≤ 𝑘𝑘

There exist 𝑓𝑓 and 𝑋𝑋0 for which a projected gradient descent method* 
with Armijo backtracking produces iterates 𝑋𝑋1,𝑋𝑋2,𝑋𝑋3, … such that:

1. rank 𝑋𝑋𝑛𝑛 = 𝑘𝑘 for all 𝑛𝑛,
2. Some stationarity measure goes to zero as 𝑛𝑛 → ∞,
3. The sequence converges to a feasible matrix 𝑋𝑋,
4. Yet the limit 𝑋𝑋 is not stationary.



Apocalypses in general

min
𝑥𝑥∈ℰ

𝑓𝑓(𝑥𝑥) subject to 𝑥𝑥 ∈ 𝒳𝒳

The tangent cone T𝑥𝑥𝒳𝒳 collects allowed directions of movement at 𝑥𝑥.

𝑥𝑥 is stationary if D𝑓𝑓 𝑥𝑥 𝑣𝑣 ≥ 0 for all 𝑣𝑣 ∈ T𝑥𝑥𝒳𝒳, i.e., −∇𝑓𝑓 𝑥𝑥 ∈ T𝑥𝑥𝒳𝒳 ∘.

This is equivalent to the property ProjT𝑥𝑥𝒳𝒳 −∇𝑓𝑓 𝑥𝑥 = 0.

Gray pictures: Ruszczyński, Nonlinear Optimization, 2006
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A first take-away, and two positives notes

To our knowledge, no optimization algorithm iterating on the
bounded-rank variety guarantees convergence to stationary points 
in all cases, even under generous assumptions on 𝑓𝑓.

We believe apocalypses are the main obstacle to that goal.

Two positive notes:
1. There are no apocalypses on convex sets nor on manifolds with boundaries.
2. We can lift bounded-rank matrices to a smooth manifold and work there.



To find stationary points, use lifts

Let ℳ = 𝐑𝐑𝑚𝑚×𝑘𝑘 × 𝐑𝐑𝑛𝑛×𝑘𝑘 and ℰ = 𝐑𝐑𝑚𝑚×𝑛𝑛.
Consider the smooth map 𝜑𝜑 𝐿𝐿,𝑅𝑅 = 𝐿𝐿𝑅𝑅⊤ from ℳ to ℰ.

Notice: 𝜑𝜑 ℳ = 𝑋𝑋 ∈ 𝐑𝐑𝑚𝑚×𝑛𝑛: rank 𝑋𝑋 ≤ 𝑘𝑘 : it is a smooth lift.

Thm*: If 𝐿𝐿,𝑅𝑅 is 2-critical for 𝑓𝑓 ∘ 𝜑𝜑, then 𝐿𝐿𝑅𝑅⊤ is stationary for 𝑓𝑓.

Claim: If 𝑓𝑓 has compact sublevel sets, then a modified version of the 
trust-region method on 𝑓𝑓 ∘ 𝜑𝜑 converges to 2-critical points, always.

* Ha, Liu & Barber, SIOPT 2021,
An equivalence between critical points for rank constraints versus low-rank factorizations

ℳ

𝒳𝒳

𝜑𝜑 𝑓𝑓 ∘ 𝜑𝜑

𝐑𝐑𝑓𝑓



Summary

Optimization on non-smooth sets can be tricky due to apocalypses.
Exist on bounded-rank variety; not on convex sets / manifolds with boundaries.

We can use lifts to move the problem to a smooth manifold.
This can be done for many other nonsmooth sets: much to explore here.

If the lift has nice properties (e.g., 2-critical ↦ stationary),
this can help use converge to stationary points with certainty.
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