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Optimization from Euclid to Riemann:
Fifty years of mostly smooth sailing

min
𝑥𝑥
𝑓𝑓 𝑥𝑥

If 𝑓𝑓 is smooth on a Euclidean space ℰ, we can design algorithms to 
(try to) minimize 𝑓𝑓 using ∇𝑓𝑓, ∇2𝑓𝑓, …

If 𝑓𝑓 is instead defined on a Riemannian manifold ℳ, we still have 
gradients and Hessians. Plenty of applications.

Many classical Euclidean algorithms generalize to manifolds,
often with essentially the same guarantees and limitations.



From Euclid to Riemann: non-convex 𝑓𝑓

Gradient descent finds 𝜀𝜀-critical points in ~ 1
𝜀𝜀2

iterations assuming Lipschitz ∇𝑓𝑓.
Euclid: folklore. Riemann: Boumal, Absil & Cartis ‘18. It’s tight: Carmon, Duchi, Hinder & Sidford ‘19.

Accelerated gradient does so in ~ 1
𝜀𝜀1.75 iterations assuming also Lipschitz ∇2𝑓𝑓.

Euclid: Carmon++ ‘17; Jin, Netrapalli & Jordan ‘18. Riemann: Criscitiello & Boumal ‘22. Almost tight: Carmon++ ‘19.

Cubic regularization does so in ~ 1
𝜀𝜀1.5 by querying ∇2𝑓𝑓 (all of it).

Euclid: Nesterov & Polyak ‘08. Riemann: Agarwal, Boumal, Bullins & Cartis ‘20. It’s tight: Carmon++ ‘19.

And more: trust regions, SGD, BFGS, nonlinear CG, …

Curvature affects constants, but only modest qualitative changes.



From Euclid to Riemann: convex 𝑓𝑓

Gradient descent finds 𝜀𝜀-critical points in ~ 1
𝜀𝜀

iterations assuming Lipschitz ∇𝑓𝑓.
Euclid: folklore. Riemann: Zhang & Sra ‘16. It’s tight: folklore.

Gradient descent does so in ~𝜅𝜅 log 1
𝜀𝜀

iterations if 𝑓𝑓 is also strongly convex.
Euclid: folklore. Riemann: Zhang & Sra ’16 + details in Criscitiello & B. ‘22, App. K. It’s the right rate for GD: folklore.

On Euclidean space, this can be accelerated to ~ 𝜅𝜅 log 1
𝜀𝜀

…
Euclid: Nesterov. It’s tight: Nemirovski & Yudin.

… But on Riemannian manifolds: no result quite the same.



Template for what we might have wanted

We consider some Riemannian manifold ℳ.

Let ℱ𝜅𝜅 be the class of functions on ℳ with condition number 𝜅𝜅, that 
is, 𝑓𝑓 ∈ 𝐶𝐶∞ ℳ has 𝐿𝐿-Lipschitz ∇𝑓𝑓, is 𝜇𝜇-strongly convex and 𝜅𝜅 = 𝐿𝐿/𝜇𝜇.

An algorithm queries 𝑓𝑓 and ∇𝑓𝑓 at 𝑥𝑥0, 𝑥𝑥1, 𝑥𝑥2, … adaptively.

Aspirational Theorem. There exists an algorithm such that, for all 
𝑓𝑓 ∈ ℱ𝜅𝜅, given 𝑥𝑥0 ∈ ℳ, there is 𝑘𝑘 ⪝ 𝜅𝜅 s.t. dist 𝑥𝑥𝑘𝑘, 𝑥𝑥⋆ ≤ dist 𝑥𝑥0, 𝑥𝑥⋆

5
.





* and the algorithm can only query in some bounded domain



𝑓𝑓 is g-convex if 𝑓𝑓 ∘ 𝛾𝛾 is convex for all geodesic curves 𝛾𝛾.

Thus, we focus on Hadamard manifolds:
Curvature ≤ 0, complete, simply connected. E.g.: hyperbolic; SPD.

PhDcomics.com

Does your space support geodesically convex 𝑓𝑓?



Smooth & strongly g-convex 𝑓𝑓 ∈ 𝐶𝐶∞(ℳ)
∇𝑓𝑓 is a vector field on ℳ such that ∇𝑓𝑓 𝑥𝑥 ∈ T𝑥𝑥ℳ is steepest ascent direction.

∇2𝑓𝑓 𝑥𝑥 : T𝑥𝑥ℳ → T𝑥𝑥ℳ is the (Riemannian) derivative of ∇𝑓𝑓 at 𝑥𝑥. It’s symmetric.

∇𝑓𝑓 is 𝐿𝐿-Lipschitz continuous and 𝑓𝑓 is 𝜇𝜇-strongly g-convex if, for all 𝑥𝑥,

𝜇𝜇𝐼𝐼 ≼ ∇2𝑓𝑓 𝑥𝑥 ≼ 𝐿𝐿𝐼𝐼

The catch: this cannot hold on all of ℳ if curvature is negative.



Effects of negative curvature: take one
Pythagoras is only an inequality: 𝑐𝑐2 ≥ 𝑎𝑎2 + 𝑏𝑏2.

Consider 𝑓𝑓 𝑥𝑥 = 1
2

dist 𝑥𝑥, 𝑥̅𝑥 2.

Euclidean space: ∇2𝑓𝑓 𝑥𝑥 = 𝐼𝐼 so 𝜇𝜇 = 𝐿𝐿 = 1 and 𝜅𝜅 = 1.

Hyperbolic space: 𝜇𝜇 = 1 but 𝐿𝐿 = 𝑟𝑟
tanh 𝑟𝑟

≈ 𝑟𝑟 so 𝜅𝜅 ≈ 𝑟𝑟.

Fact: If 𝑓𝑓 has 𝐿𝐿-Lipschitz gradient and is 𝜇𝜇 strongly

g-convex on a ball of radius 𝑟𝑟 (large), then 𝜅𝜅 ≥ 1
10
𝑟𝑟.

Quanta

∇𝑓𝑓 𝐿𝐿-Lipschitz continuous, 𝑓𝑓 𝜇𝜇-strongly g-convex: 𝜇𝜇𝐼𝐼 ≼ ∇2𝑓𝑓 𝑥𝑥 ≼ 𝐿𝐿𝐼𝐼.     𝜅𝜅 = 𝐿𝐿/𝜇𝜇

𝑥̅𝑥

𝑥𝑥

𝑟𝑟



Main theorem

Let ℳ be hyperbolic space (curvature −1)—for this talk.

𝑓𝑓 ∈ 𝐶𝐶∞ ℳ is in function class ℱ𝜅𝜅,𝑟𝑟,𝑥̅𝑥 if it is 𝜇𝜇-strongly convex on ℳ, 
its gradient is 𝐿𝐿-Lipschitz on 𝐵𝐵(𝑥̅𝑥, 𝑟𝑟), 𝜅𝜅 = 𝐿𝐿/𝜇𝜇 and dist 𝑥̅𝑥, 𝑥𝑥⋆ ≤ 3

4
𝑟𝑟.

Consider any algorithm that queries 𝑓𝑓 and ∇𝑓𝑓 at 𝑥𝑥0, 𝑥𝑥1, 𝑥𝑥2, …

Theorem. For any 𝜅𝜅 ≥ 1000, set 𝑟𝑟 such that 𝜅𝜅 = 12𝑟𝑟 + 9.
There exists 𝑓𝑓 ∈ ℱ𝜅𝜅,𝑟𝑟,𝑥̅𝑥 s.t. dist 𝑥𝑥𝑘𝑘, 𝑥𝑥⋆ > 𝑟𝑟

5
for all 𝑘𝑘 < 𝜅𝜅

1000 log 10𝜅𝜅
.

Fact: If 𝑓𝑓 has 𝐿𝐿-Lipschitz gradient and is 𝜇𝜇 strongly
g-convex on a ball of radius 𝑟𝑟 (large), then 𝜅𝜅 ≥ 1

10
𝑟𝑟.



Main theorem: a few comments
We can’t pick 𝑟𝑟 ≫ 𝜅𝜅 as otherwise ℱ is empty.

We could pick 𝑟𝑟 ≪ 𝜅𝜅 – but not too small, otherwise curvature fades.
Some algorithms achieve eventual or local acceleration [Zhang & Sra ‘18; Ahn & Sra ’20; 
Martinez-Rubio ’21; Alimisis, Orvieto, Bécigneul & Lucchi ‘21].

Promising recent work targets 1 ≪ 𝑟𝑟 ≪ 𝜅𝜅 (say, 𝑟𝑟 ≈ 𝜅𝜅).
Leads: [Kim & Yang ’22], and a recent follow-up by others on OpenReview.

Theorem. For any 𝜅𝜅 ≥ 1000, set 𝑟𝑟 such that 𝜅𝜅 = 12𝑟𝑟 + 9.
There exists 𝑓𝑓 ∈ ℱ𝜅𝜅,𝑟𝑟,𝑥̅𝑥 s.t. dist 𝑥𝑥𝑘𝑘, 𝑥𝑥⋆ > 𝑟𝑟

5
for all 𝑘𝑘 < 𝜅𝜅

1000 log 10𝜅𝜅
.

Fact: If 𝑓𝑓 has 𝐿𝐿-Lipschitz gradient and is 𝜇𝜇 strongly
g-convex on a ball of radius 𝑟𝑟 (large), then 𝜅𝜅 ≥ 1

10
𝑟𝑟.



Proof technique: a resisting oracle

The algorithm queries on oracle for 𝑓𝑓 𝑥𝑥𝑘𝑘 and ∇𝑓𝑓 𝑥𝑥𝑘𝑘 , 𝑘𝑘 = 0,1,2 …
Its aim: find 𝑥𝑥𝑘𝑘 such that dist 𝑥𝑥𝑘𝑘, 𝑥𝑥⋆ ≤ 𝑟𝑟

5
, as fast as possible.

The oracle replies in such a way that there exists a compatible 𝑓𝑓 ∈ ℱ.
Its aim: for as long as possible, ensure existence of two compatible 
functions in ℱ whose minimizers are more than 2 𝑟𝑟

5
apart.

Starting point: pick many 𝑓𝑓𝑖𝑖 ∈ ℱ whose minimizers are ≥ 𝑟𝑟
2

apart.



Effects of negative curvature: take two
Balls have volume exponential in their radius.

Intuitively, this is because geodesics diverge exponentially.

How many balls of radius 𝑟𝑟
4

fit in a ball of radius 𝑟𝑟?

Euclidean space 𝐑𝐑𝑑𝑑: ~ 𝑟𝑟𝑑𝑑

𝑟𝑟
4

𝑑𝑑 = 4𝑑𝑑 independent of 𝑟𝑟

Hyperbolic plane: ~ 𝑒𝑒𝑟𝑟

𝑒𝑒𝑟𝑟/4 = 𝑒𝑒
3
4𝑟𝑟 exponential in 𝑟𝑟

Starting point: pick many 𝑓𝑓𝑖𝑖 ∈ ℱ whose minimizers are ≥ 𝑟𝑟
2

apart.



(Part of) Hamilton & Moitra’s insight
We can pack 𝑁𝑁 ≈ 𝑒𝑒𝑟𝑟 balls of radius 𝑟𝑟

4
in the ball 𝐵𝐵 𝑥̅𝑥, 𝑟𝑟 .

Their centers 𝑧𝑧1, … , 𝑧𝑧𝑁𝑁 satisfy dist 𝑧𝑧𝑖𝑖 , 𝑧𝑧𝑗𝑗 ≥ 𝑟𝑟
2

> 2 𝑟𝑟
5

for all 𝑖𝑖 ≠ 𝑗𝑗.

For each 𝑧𝑧𝑖𝑖 , let 𝑓𝑓𝑖𝑖 𝑥𝑥 = 1
2

dist 𝑥𝑥, 𝑧𝑧𝑖𝑖 2.    Note: 𝑓𝑓𝑖𝑖 ∈ ℱ𝜅𝜅,𝑟𝑟,𝑥̅𝑥 with 𝜅𝜅 ≈ 𝑟𝑟.

The oracle answers each query such that a fixed fraction remain compatible.

Since we start with exponentially many, at least 2 survive after ~𝑟𝑟 ≈ 𝜅𝜅 queries.

Starting point: pick many 𝑓𝑓𝑖𝑖 ∈ ℱ whose minimizers are ≥ 𝑟𝑟
2

apart.

𝑧𝑧1
𝑧𝑧2

𝑧𝑧3

𝐵𝐵 𝑥̅𝑥, 𝑟𝑟



How can the oracle keep many 𝑓𝑓𝑖𝑖 compatible?

For each 𝑧𝑧𝑖𝑖 , let 𝑓𝑓𝑖𝑖 𝑥𝑥 = 1
2

dist 𝑥𝑥, 𝑧𝑧𝑖𝑖 2.    Note: 𝑓𝑓𝑖𝑖 ∈ ℱ𝜅𝜅,𝑟𝑟,𝑥̅𝑥 with 𝜅𝜅 ≈ 𝑟𝑟.

The oracle answers query 𝑥𝑥𝑘𝑘 such that a fixed fraction remain compatible.

Hiccup: −∇𝑓𝑓𝑖𝑖 𝑥𝑥𝑘𝑘 ∈ T𝑥𝑥𝑘𝑘ℳ points directly at 𝑧𝑧𝑖𝑖 (the minimizer!)
These gradients are all different… but many are similar.

H&M’s approach: allow the oracle to return a noisy gradient 𝑔𝑔 ≈ ∇𝑓𝑓𝑖𝑖 𝑥𝑥𝑘𝑘 .

Ours: modify many of the 𝑓𝑓𝑖𝑖 so they have the same gradient at 𝑥𝑥𝑘𝑘: return that.
Difficulty: the modified 𝑓𝑓𝑖𝑖 must remain in ℱ, and we can’t break past queries.



Bump functions instead of noise
At query 𝑥𝑥𝑘𝑘 , we add bumps to many 𝑓𝑓𝑖𝑖 .
Bumps have (small) compact support.
Allow us to steer gradients at 𝑥𝑥𝑘𝑘 .
Bumps have bounded ∇2 so 𝑓𝑓𝑖𝑖 stay in ℱ.

If 𝑥𝑥𝑘𝑘 is far from 𝑥𝑥0, … , 𝑥𝑥𝑘𝑘−1, the 𝑓𝑓𝑖𝑖 are 
pristine near 𝑥𝑥𝑘𝑘: can add sizable bump.
Technicality: assume 𝑥𝑥𝑘𝑘 ∈ 𝐵𝐵 𝑥̅𝑥, 𝑟𝑟 so we 
can bound ∇𝑓𝑓𝑖𝑖 𝑥𝑥𝑘𝑘 .
Then pigeonhole. Then reduction.

T𝑥𝑥𝑘𝑘ℳ

0𝑥𝑥𝑘𝑘
∇𝑓𝑓2 𝑥𝑥𝑘𝑘

∇𝑓𝑓17 𝑥𝑥𝑘𝑘

∇𝑓𝑓6 𝑥𝑥𝑘𝑘



Bump functions instead of noise
At query 𝑥𝑥𝑘𝑘 , we add bumps to many 𝑓𝑓𝑖𝑖 .
Bumps have (small) compact support.
Allow us to steer gradients at 𝑥𝑥𝑘𝑘 .
Bumps have bounded ∇2 so 𝑓𝑓𝑖𝑖 stay in ℱ.

If 𝑥𝑥𝑘𝑘 is close to some 𝑥𝑥ℓ with ℓ < 𝑘𝑘, then 
be careful not to break past work.
Still fine because the 𝑓𝑓𝑖𝑖 already have the 
same gradient at 𝑥𝑥ℓ.
Smaller bumps suffice to align them at 𝑥𝑥𝑘𝑘 .

T𝑥𝑥𝑘𝑘ℳ

0𝑥𝑥𝑘𝑘



A meta comment

Resisting oracles require one to build many 𝑓𝑓’s in the function class.
We tried and failed a lot.

E.g., not generally clear how to interpolate gradients with g-convex 𝑓𝑓.

Adding bumps to a nice starter 𝑓𝑓 is the only thing that worked for us.



Conclusions

Results extend to (not strong) g-convexity; SPD cone; but randomized?

When it comes to accelerated gradients on Hadamard spaces,
we can’t have the thing we might have thought we should have.

That’s not to say there are no meaningful other types of acceleration.





Examples of Hadamard manifolds
Euclidean space: 𝐑𝐑𝑛𝑛 with 𝑢𝑢, 𝑣𝑣 = 𝑢𝑢⊤𝑣𝑣. Constant curvature: 0

Hyperbolic space: 𝑥𝑥 ∈ 𝐑𝐑𝑛𝑛+1: 𝑥𝑥02 = 1 + 𝑥𝑥12 + ⋯+ 𝑥𝑥𝑛𝑛2 Constant curvature: −1
with Minkowski metric 𝑢𝑢, 𝑣𝑣 = −𝑢𝑢0𝑣𝑣0 + 𝑢𝑢1𝑣𝑣1 + ⋯+ 𝑢𝑢𝑛𝑛𝑣𝑣𝑛𝑛.

Positive definite matrices 𝑋𝑋 ∈ 𝐑𝐑𝑛𝑛×𝑛𝑛:𝑋𝑋 = 𝑋𝑋⊤ and 𝑋𝑋 ≻ 0 Variable curvature, ≤ 0
with affine invariant metric 𝑈𝑈,𝑉𝑉 𝑋𝑋 = Tr 𝑋𝑋−1𝑈𝑈𝑋𝑋−1𝑉𝑉 .
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