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Why we can't quite accelerate gradient
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Optimization from Euclid to Riemann:
Fifty years of mostly smooth sailing

min f (x)

If f is smooth on a , we can design algorithms to
(try to) minimize f using Vf, V4f, ...

If f is instead defined on a , we still have
gradients and Hessians. Plenty of applications.

Many classical Euclidean algorithms generalize to manifolds,
often with essentially the same guarantees and limitations.




From Euclid to Riemann: f

finds e-critical points in ~ 8—2 iterations assuming

does so in ~ iterations assuming also
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does so in ~—— by (all of it).
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And more: trust regions, SGD, BFGS, nonlinear CQ, ...

Curvature affects constants, but only modest qualitative changes.




From Euclid to Riemann: f

finds e-critical points in ~ ; 1terations assuming

. 1, . o
does so in ~ log; iterations if f is also

On Euclidean space, this can be to ~ logi

... But on Riemannian manifolds: no result quite the same.




Template for what we might have wanted

We consider some M.

Let F,. be the on M with condition number k, that
is, f € C* (M) has L-Lipschitz Vf, is u-strongly convex and k = L/p.

An queries f and Vf at xg, x1, X, ... adaptively.

Aspirational Theorem. There exists an algorithm such that, for all

: : ~ . dist(xg, x*
f € F,, given x, € M, there is k = /i s.t. dist(x;, x*) < = (9;(’ ad ).
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No-go Theorem for Acceleration in the Hyperbolic Plane
Linus Hamilton, Ankur Moitra

In recent years there has been significant effort to adapt the key tools and ideas in convex
optimization to the Riemannian setting. One key challenge has remained: Is there a Nesterov-
like accelerated gradient method for geodesically convex functions on a Riemannian manifold?
Recent work has given partial answers and the hope was that this ought to be possible.

Here we dash these hopes. We prove that in a noisy setting, there is no analogue of
accelerated gradient descent for geodesically convex functions on the hyperbolic plane. Our
results apply even when the noise is exponentially small. The key intuition behind our proof is
short and simple: In negatively curved spaces, the volume of a ball grows so fast that
information about the past gradients is not useful in the future.
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No-go Theorem for Acceleration in the Hyperbolic Plane

Linus Hamilton, Ankur Moitra

In recent years there has been significant effort to adapt the key tools and ideas in convex
optimization to the Riemannian setting. One key challenge has remained: |s there a Nesterov-
like accelerated gradient method for geodesically convex functions on a Riemannian manifold?
Recent work has given partial answers and the hope was that this ought to be possible.

Here we dash these hopes. We prove that in a noisy setting, there is no analogue of
accelerated gradient descent for geodesically convex functions on the hyperbolic plane. Our
results apply even when the noise is exponentially small. The key intuition behind our proof is
short and simple: In negatively curved spaces, the volume of a ball grows so fast that
information about the past gradients is not useful in the future.

Comments: 12 pages and the algorithm can only query in some bounded domain




Does your space support geodesically convex f?

f is if f oy is convex for all geodesic curves y.
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FLAT?  HYPERBOLIC?

Thus, we focus on :
Curvature < 0, complete, simply connected. E.g.: hyperbolic; SPD.
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Smooth & strongly g-convex f € C* (M)

Vf is a vector field on M such that Vf (x) € T, M is steepest ascent direction.
V4f(x): T,M - T, M is the (Riemannian) derivative of Vf at x. It's symmetric.

Vf is L-Lipschitz continuous and f is p-strongly g-convex if, for all x,
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Vf L-Lipschitz continuous, f -strongly g-convex: 1l < V4f(x) < LI. =L/u

Effects of negative curvature: take one
is only an inequality: ¢? > a? + b?. Quanta

Consider f(x) = %dist(x, X)?2.

Euclidean space: V2f(x) =Isoy =/, =1and x = 1.

. r
Hyperbolic space: 1 = 1but L = S R TS0K AT

Fact: If f has L-Lipschitz gradient and is /: strongly

g-convex on a ball of radius r (large), then « > 1—10 T.




Fact: If f has /-Lipschitz gradient and is ;. strongly
g-convex on a ball of radius r (large), then « > 1—10 T.

Main theorem

Let M be (curvature —1)—for this talk.

fec®(M)isin F. » z if itis p-strongly convex on M,
its gradient is L-Lipschitz on B(x,7), x = L/u and dist(x, x*) < Zr.

Consider any that queries f and Vf at x, x{, x5, ...

Theorem. For any « = 1000, set 7 such that « = 12r + 9.
There exists f € F, , z s.t. dist(xg, x™) > gfor all k <

1000 log(10x)



Fact: If f has /.-Lipschitz gradient and is
g-convex on a ball of radius r (large), then

Main theorem: a few comments

We can’t pick 7 > « as otherwise F is empty.

We could pick r < ¥ - but not too small, otherwise curvature fades.

Some algorithms achieve eventual or local acceleration [Zhang & Sra ‘18; Ahn & Sra’20;
Martinez-Rubio '21; Alimisis, Orvieto, Bécigneul & Lucchi ‘21].

Promising recent work targets 1 < r < « (say, r = /x).

Leads: [Kim & Yang '22], and a recent follow-up by others on OpenReview.

Theorem. For any « = 1000, set  such that « = 12r + 9.

There exists f € F,. , ¢ s.t. dist(xg, x™) > gfor all k <

1000 log(10x)

strongly
> = r.
0



Proof technique: a resisting oracle

The queries on oracle for f(x;) and Vf(x,), k = 0,1,2 ...
Its : find x;, such that dist(x;, x™) < g, as fast as possible.

The replies in such a way that there exists a compatible f € F.
Its : for as long as possible, ensure existence of two compatible

. . - . r
functions in F whose minimizers are more than 2 - apart.

. . . r
: pick many f; € F whose minimizers are > > apart.



c o_.c . r
: pick many f; € F whose minimizers are > > apart.

Effects of negative curvature: take two

Balls have volume in their radius.

Intuitively, this is because exponentially.

How many balls of radius Z fitin a ball of radius 7?

Euclidean space R¢: ~ : - = 44 independent of r
)
. er Er .
Hyperbolic plane: Sa = et inr




c o_.c . r
: pick many f; € F whose minimizers are > > apart.

(Part of) Hamilton & Moitra’s insight

We can pack N = e’ balls of radius % in the ball B(x, r).

Their centers z4, ..., zy satisfy dist(zi,zj) = % > 2 % foralli # j.

For each z;, let f;(x) = ldist(x, z;)?. Note: f; € F,. . zwithk = 7.
2 b

The oracle answers each query such that a fixed fraction remain compatible.

Since we start with exponentially many, at least 2 survive after ~r = k queries.



How can the oracle keep many f; compatible?

1. .
For each z;, let f;(x) = Edlst(x, z;)*. Note: f; € F, .z withk = 7.
The oracle answers query x;, such that a fixed fraction remain compatible.

Hiccup: —Vf;(xy) € T,, M points directly at z; (the minimizer!)

These gradients are all different... but many are similar.

's approach: allow the oracle to return a noisy gradient g = Vf;(xy,).

: modify many of the f; so they have the same gradient at x;,: return that.



Bump functions instead of noise @

At query x;, we add bumps to many f;.
Bumps have (small) compact support.
Allow us to at xy.

Bumps have bounded VZ so f; stay in F.

If x;, is far from x, ..., x;_4, the f; are
pristine near x,: can add sizable bump.

Technicality: assume x;, € B(x,7) so we
can bound ||Vf; (x;)|l.

Then pigeonhole. Then reduction.
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Bump functions instead of noise

At query x;, we add bumps to many f;.
Bumps have (small) compact support.
Allow us to at xy.

Bumps have bounded V# so f; stay in F.

If x; is to some x, with € < k, then
be careful not to break past work.

Still fine because the f; already have the
same gradient at x,.

Smaller bumps suffice to align them at xy.




A meta comment

Resisting oracles require one to build many f’s in the function class.
We tried and failed a lot.

E.g., not generally clear how to interpolate gradients with g-convex f.

Adding bumps to a nice starter f is the only thing that worked for us.
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Conclusions

Results extend to (not strong) g-convexity; SPD cone; but randomized?

When it comes to accelerated gradients on Hadamard spaces,
we can't have the thing we might have thought we should have.

That's not to say there are no meaningful other types of acceleration.







Examples of Hadamard manifolds
- R™ with (u, v) = u'v.

{x € R"Lixi =1+ x% + -+ x2}

with Minkowski metric (u, v) = —ugvy + u vy + -+ + u, vy,

{(Xe R X =X"and X > 0}
with affine invariant metric (U, V), = Tr(X"1UX~1V).
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